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Motivation

Methodology

Conclusion
● We investigate what neural machine 

translation models learn about morphology.
● We evaluate NMT representation quality on 

POS and morphological tagging.
● Our insights can guide further development 

of NMT systems, for example by guiding joint 
learning of translation and morphology.

● Future work can extend the analysis to other 
representations, deeper networks, and 
semantic tasks.
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● Effect of word representation
i. Word           

ii. charCNN

● Effect of encoder depth
○ Representations from lower layers 

are better for POS/morphology.
○ But deeper networks improve BLEU.
○ Do higher layers capture semantics?

● Effect of target language
○ Translating to morphologically-poorer 

languages leads to better representations.
○ BLEU scores do not always entail better 

morphological representations.

● Neural machine translation (NMT) obtains 
state-of-the-art performance with a simple 
end-to-end architecture.

● Little is known about what these models learn 
about source and target languages during 
training.

● We analyze intermediate representations 
learned by NMT and evaluate their quality for 
learning morphology in different 
morphologically-rich languages.

● Research questions:
○ Which parts of the NMT architecture 

capture word structure?
○ What is the division of labor between NMT 

components (encoder, decoder, attention)? 
○ How do different word representations help 

learn better morphology and modeling of 
infrequent words?

○ How does the target language affect the 
learning of word structure?

● 3-step procedure to evaluate morphology 
learned in different parts of the network.

1. Train NMT model on parallel data
2. Extract features from pre-trained model
3. Train classifier on supervised data

● Quality of trained classifier reflects quality of 
extracted representations.

● Extrinsically evaluate on POS/morph. tagging

● Encoder vs. decoder representations
○ Decoder representations are much worse 

for POS/morphology.
● Effect of attention mechanism
○ Attention mechanism takes load from the 

decoder when learning target morphology.

● Effect of word representation
○ Character representations do not help the 

decoder.
○ Possible explanation: charCNN cannot 

generate unseen words.
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○ Representations learned with 
char-based models give better BLEU 
scores and POS accuracy

○ Infrequent words benefit most.
○ Certain tags are more sensitive to 

character information.


