UNDERSTANDING AND IMPROVING MORPHOLOGICAL LEARNING

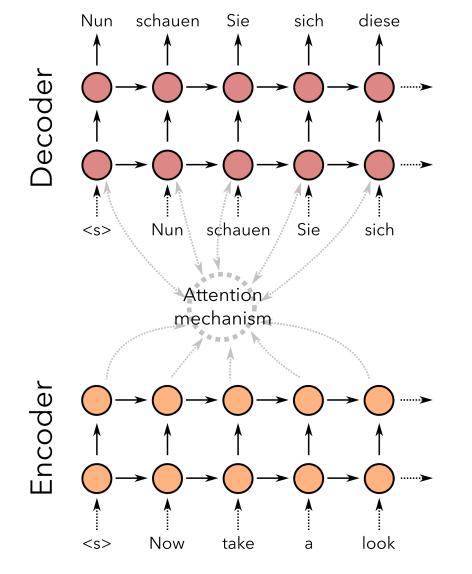
IN THE NEURAL MACHINE TRANSLATION DECODER

Fahim Dalvi Nadir Durrani Hassan Sajjad Yonatan Belinkov Stephan Vogel Qatar Computing Research Institute, HBKU CSAIL, MIT

Goal

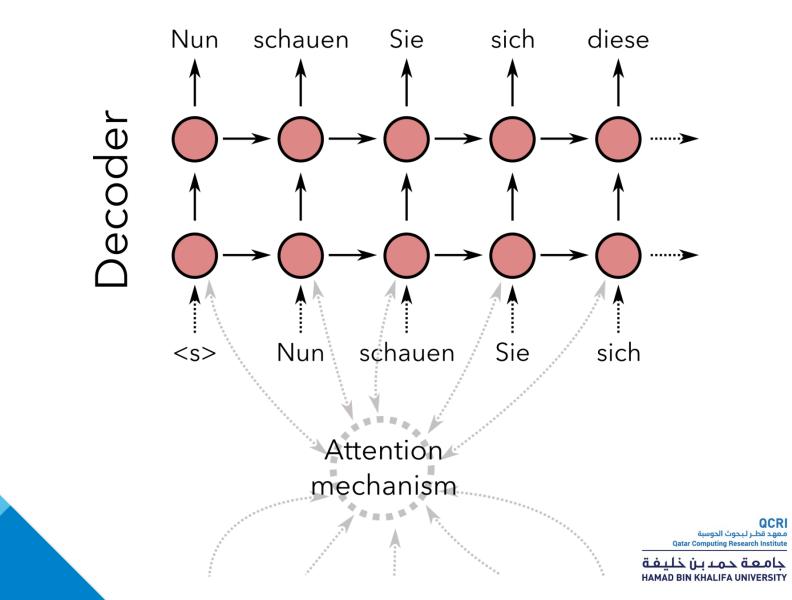
Improve overall Neural Machine Translation performance by providing the system with explicit morphological knowledge

Recap: Neural Machine Translation



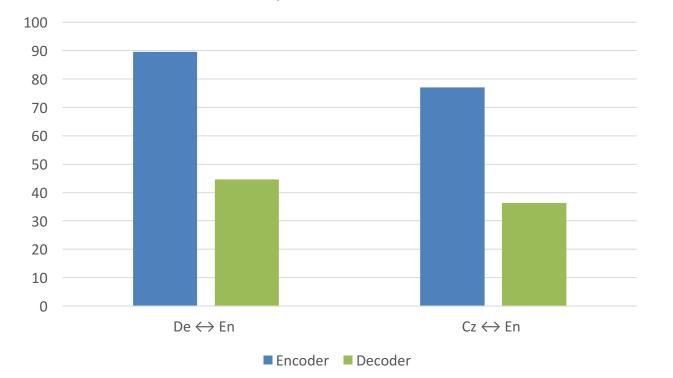
QCRI معهد قطار لبحوث الحوسبة **Qatar Computing Research Institute** حامعة حمدين خليفة HAMAD BIN KHALIFA UNIVERSITY

Recap: Neural Machine Translation



Motivation

Morphological Tagging accuracies using NMT representations



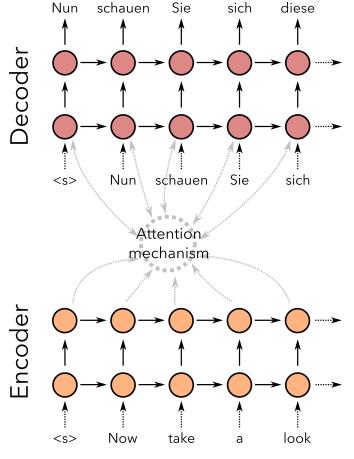
Belinkov et. al. What do Neural Machine Translation Models Learn about Morphology? (ACL 2017)

Our Work

- I. Analyze why the decoder learns less morphological knowledge compared to the encoder
- II. Inject morphological knowledge explicitly into the decoder to improve overall translation performance

Part I: NMT Decoder Analysis

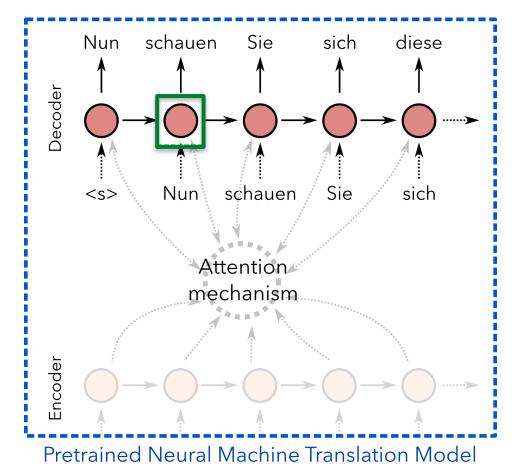
Step I: Train an NMT model



جامعة حمدبن خليفة HAMAD BIN KHALIFA UNIVERSITY

Step I: Train an NMT model

Step II: Extract activations from desired layer

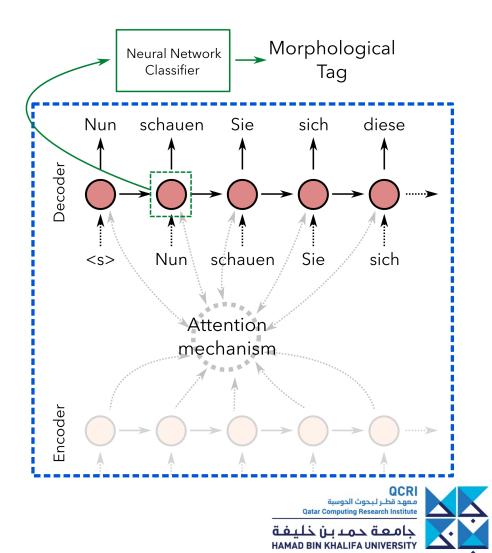


حامعة حمدين خليفة HAMAD BIN KHALIFA UNIVERSITY

Step I: Train an NMT model

Step II: Extract activations from desired layer

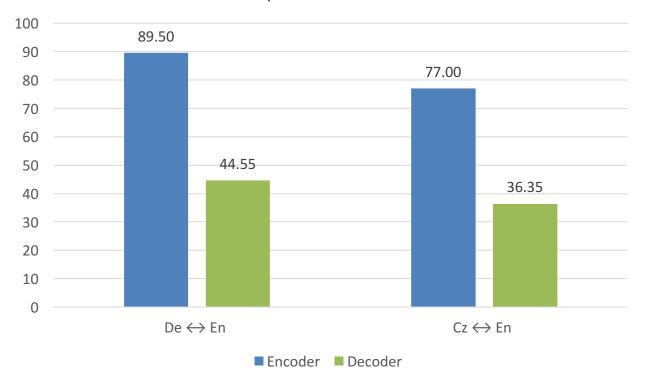
Step III: Train an external classifier



The accuracy of the classifier can be used as a proxy for how much morphological knowledge NMT has learned

Analysis: Encoder vs Decoder

Morphological Tagging accuracies using NMT representations



All morphological tagging is done on German or Czech. For encoder we use $\{De,Cz\} \rightarrow En$ systems For decoder we use $En \rightarrow \{De,Cz\}$ systems

Analysis: Encoder vs Decoder

NMT decoders are able to produce good translations even in morphologically rich languages

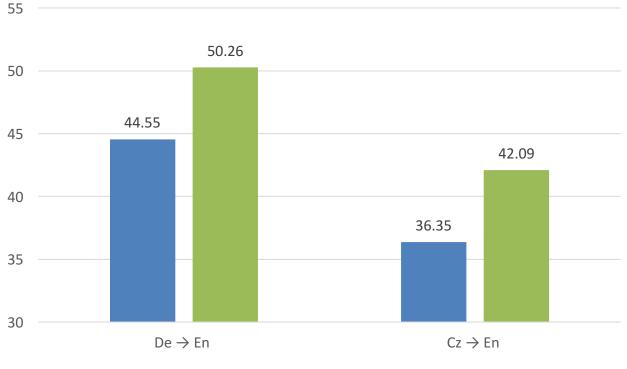
Analysis: Encoder vs Decoder

NMT decoders are able to produce good translations even in morphologically rich languages

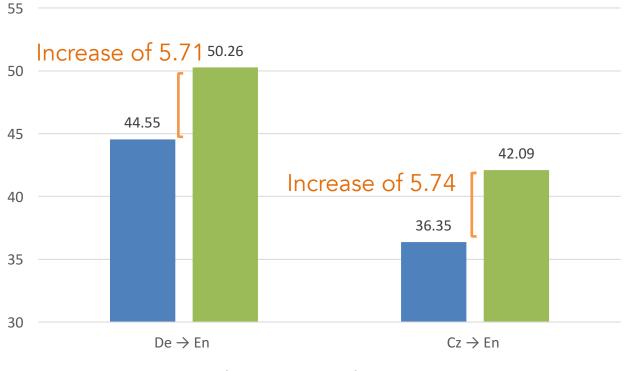
Is there **another part** in the network that aids the decoder for **target side morphology**?

Does the decoder even **need to learn more** morphology than what is already learned?

Morphological Tagging accuracies of the Decoder

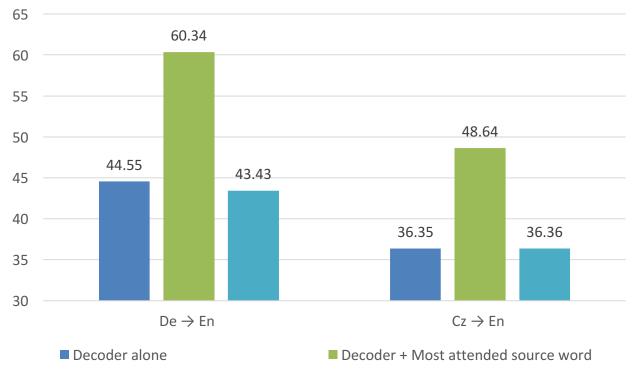


Morphological Tagging accuracies of the Decoder



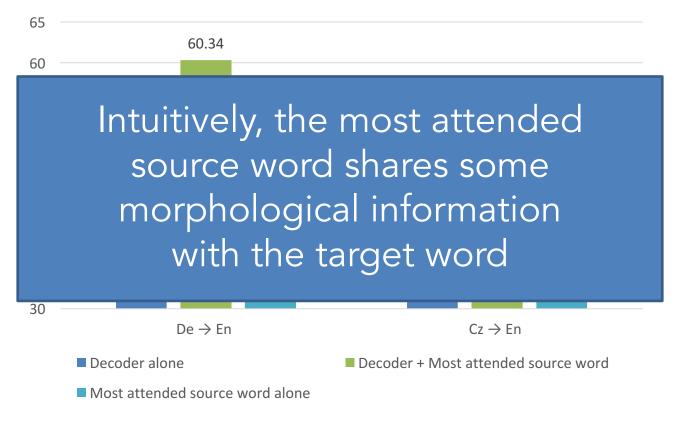
The decoder actually see's more then the **decoder state** – it also sees a **weighted representation** of the source words (through attention)

Effect of the most attended source word



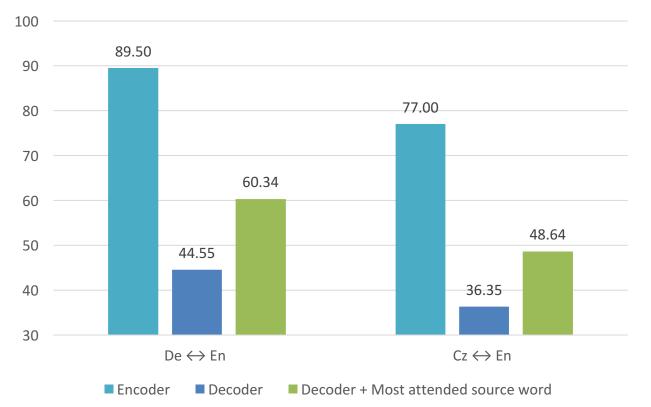
Most attended source word alone

Effect of the most attended source word



Analysis: Summary

Morphological tagging accuracies



All morphological tagging is done on German or Czech. For encoder we use $\{De,Cz\} \rightarrow En \text{ systems}$ For decoder we use $En \rightarrow \{De,Cz\}$ systems

Analysis: Conclusion

- Overall, the decoder does not perform as well as the encoder on morphological tagging
- 2) The source-side representations and the attention mechanism aid the decoder even with regards to target morphology
 3) Even with this aid, decoder accuracies are not as high as the encoder

Part II: Morphology Injection

Morphology Injection

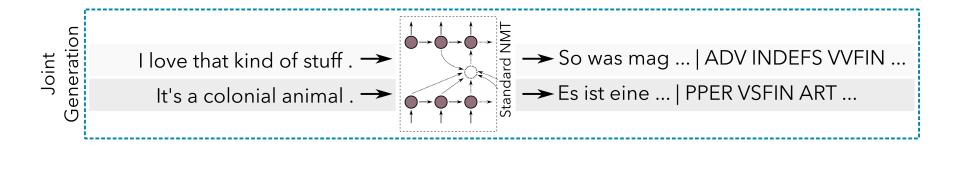
We have seen that there is room for improvement in the decoder's morphological tagging performance

Morphology Injection

We propose three techniques to explicitly inject morphology into the decoder:

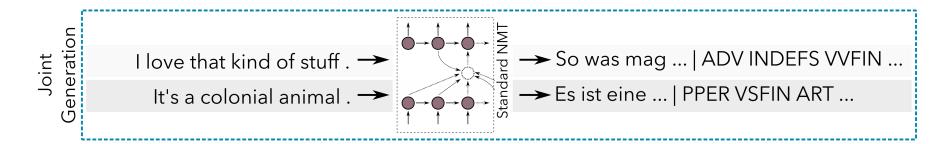
- 1) Joint generation
- 2) Joint-data learning
- 3) Multi-task learning

Joint generation



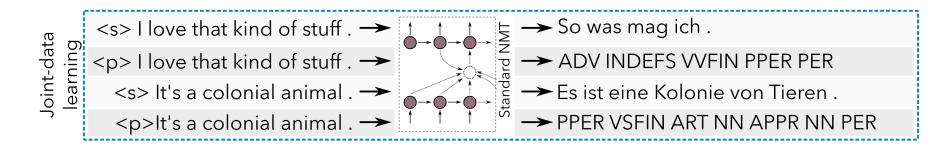
Force the decoder to produce the POS sequence alongside the usual translation sequence

Joint generation



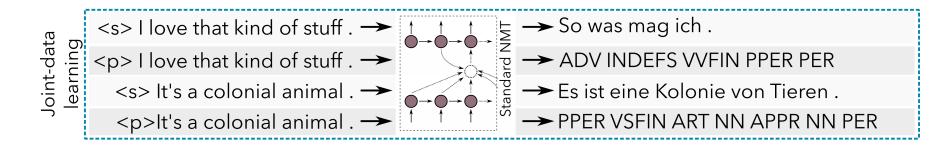
Pro: No changes in existing NMT architecture **Con:** Word and POS bases are far from each other, will require attention to attend to each source word twice

Joint-data learning



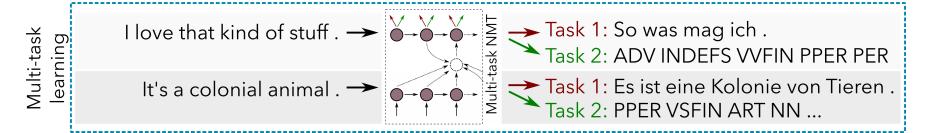
Make the decoder predict **translation or POS** sequence. Output type is defined by <s>/ tags in source sentence

Joint-data learning



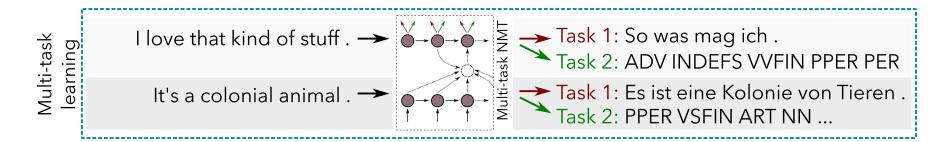
Pro: No changes in existing NMT architecture **Con:** Data is explicitly doubled, so training takes longer

Multi-task learning

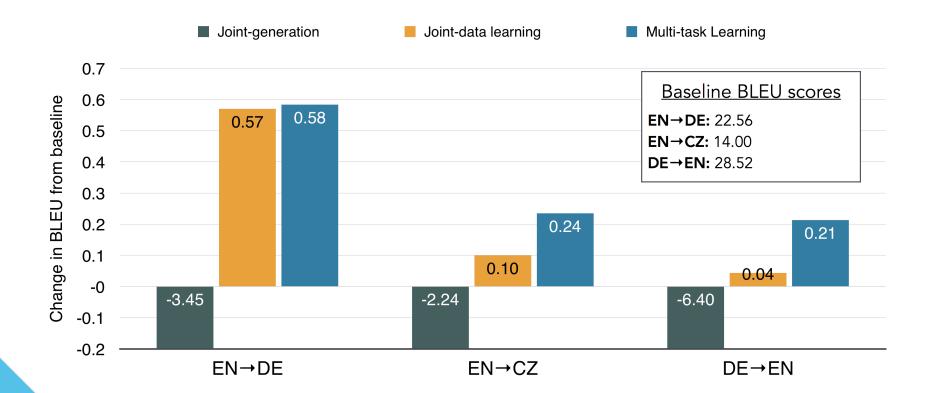


Make the decoder predict both the translation and POS sequence simultaneously

Multi-task learning



Pro: Principled approach, avoids issues of previous methods **Con:** Requires modification to standard sequence-to-sequence to perform multiple tasks



Conclusion

- 1) Explicit morphological knowledge injection leads to improved translation performance
- 2) Code is available at:

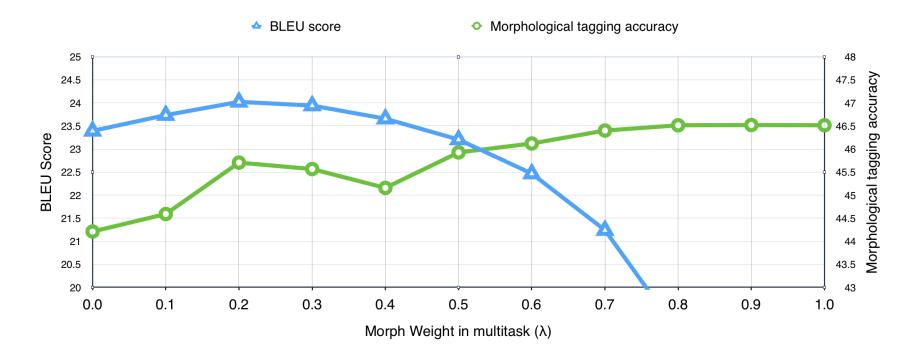
https://github.com/fdalvi/seq2seq-attn-multitask

Thank you!

Questions?

Backup

Multi-task learning has **two objective functions** in our case – one for translation and one for POS tagging. We can introduce a **hyper parameter to weigh** the importance of these objective functions



Hyper parameter tuning results for $En \rightarrow De model$

Intuitively, translation is a **much more important task**, and hence this weighing **should not be equal**

The other methods (Joint generation and Joint-data learning) do not allow us to weigh these two different tasks easily, which is an advantage of Multi-task learning!

