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Abstract

In this paper, we explore alternative ways
to train a neural machine translation sys-
tem in a multi-domain scenario. We inves-
tigate data concatenation (with fine tun-
ing), model stacking (multi-level fine tun-
ing), data selection and weighted ensem-
ble. Our findings show that the best trans-
lation quality can be achieved by build-
ing an initial system on a concatenation
of available out-of-domain data and then
fine-tuning it on in-domain data. Model
stacking works best when training begins
with the furthest out-of-domain data and
the model is incrementally fine-tuned with
the next furthest domain and so on. Data
selection did not give the best results, but
can be considered as a decent compro-
mise between training time and translation
quality. A weighted ensemble of different
individual models performed better than
data selection. It is beneficial in a scenario
when there is no time for fine-tuning.

1 Introduction

Neural machine translation (NMT) systems are
sensitive to the data they are trained on. The avail-
able parallel corpora come from various genres
and have different stylistic variations and seman-
tic ambiguities. While such data is often benefi-
cial for a general purpose machine translation sys-
tem, a problem arises when building systems for
specific domains such as lectures (Guzmán et al.,
2013; Cettolo et al., 2014), patents (Fujii et al.,
2010) or medical text (Bojar et al., 2014), where
either the in-domain bilingual text does not exist
or is available in small quantities.

Domain adaptation aims to preserve the identity
of the in-domain data while exploiting the out-of-

domain data in favor of the in-domain and avoid-
ing possible drift towards out-of-domain jargon
and style. The most commonly used approach
to train a domain-specific neural MT system is
to fine-tune an existing model (trained on generic
data) with the new domain (Luong and Manning,
2015; Freitag and Al-Onaizan, 2016; Servan et al.,
2016; Chu et al., 2017) or to add domain-aware
tags in building a concatenated system (Kobus
et al., 2016). van der Wees et al. (2017) proposed
a gradual fine-tuning method that starts training
with complete in- and out-of-domain data and
gradually reduces the out-of-domain data for next
epochs. Other approaches that have been recently
proposed for domain adaptation of neural machine
translation are instance weighting (Wang et al.,
2017b; Chen et al., 2017) and data selection (Wang
et al., 2017a).

In this paper we explore NMT in a multi-
domain scenario. Considering a small in-domain
corpus and a number of out-of-domain corpora,
we target questions like:

• What are different ways to combine multiple
domains during a training process?

• What is the best strategy to build an optimal
in-domain system?

• Which training strategy results in a robust
system?

• Which strategy should be used to build a de-
cent in-domain system given limited time?

To answer these, we try the following approaches:
i) data concatenation: train a system by con-
catenating all the available in-domain and out-of-
domain data; ii) model stacking: build NMT in
an online fashion starting from the most distant
domain, fine-tune on the closer domain and finish
by fine-tuning the model on the in-domain data;



iii) data selection: select a certain percentage of
the available out-of-domain corpora that is most
closest to the in-domain data and use it for train-
ing the system; iv) multi-model ensemble: sepa-
rately train models for each available domain and
combine them during decoding using balanced or
weighted averaging. We experiment with Arabic-
English and German-English language pairs. Our
results demonstrate the following findings:

• A concatenated system fine-tuned on the in-
domain data achieves the most optimal in-
domain system.

• Model stacking works best when starting
from the furthest domain, fine-tuning on
closer domains and then finally fine-tuning
on the in-domain data.

• A concatenated system on all available data
results in the most robust system.

• Data selection gives a decent trade-off be-
tween translation quality and training time.

• Weighted ensemble is helpful when several
individual models have been already trained
and there is no time for retraining/fine-tuning.

The paper is organized as follows: Section 2 de-
scribes the adaptation approaches explored in this
work. We present experimental design in Section
3. Section 4 summarizes the results and Section 5
concludes.

2 Approaches

Consider an in-domain data Di and a set of out-
of-domain data Do = Do1 , Do2 , ..Don . We explore
several methods to benefit from the available data
with an aim to optimize translation quality on the
in-domain data. Specifically, we try data concate-
nation, model stacking, data selection and ensem-
ble. Figure 1 presents them graphically. In the
following, we describe each approach briefly.

2.1 Concatenation
A naı̈ve yet commonly used method when training
both statistical (Williams et al., 2016)1 and neu-
ral machine translation systems (Sennrich et al.,
2016a) is to simply concatenate all the bilingual

1State-of-the-art baselines are trained on plain concatena-
tion of the data with MT feature functions (such as Language
Model) skewed towards in-domain data, through interpola-
tion.

Figure 1: Multi-domain training approaches

parallel data before training the system. During
training an in-domain validation set is used to
guide the training loss. The resulting system has
an advantage of seeing a mix of all available data
at every time interval, and is thus robust to handle
heterogeneous test data.

2.2 Fine Tuning and Model Stacking

Neural machine translation follows an online
training strategy. It sees only a small portion of
the data in every training step and estimates the
value of network parameters based on that portion.
Previous work has exploited this strategy in the
context of domain adaptation. Luong and Man-
ning (2015) trained an initial model on an out-of-
domain data and later extended the training on in-
domain data. In this way the final model param-
eters are tuned towards the in-domain data. The
approach is referred as fine-tuning later on.

Since in this work we deal with several do-
mains, we propose a stacking method that uses
multi-level fine-tuning to train a system. Figure 1
(second row) shows the complete procedure: first,
the model is trained on the out-of-domain data Do1

for N epochs; training is resumed from N + 1-th
epoch to the M -th epoch but using the next avail-
able out-of-domain data Do2 ; repeat the process
till all of the available out-of-domain corpora have
been used; in the last step, resume training on the
in-domain data Di for a few epochs. The result-
ing model has seen all of the available data as in
the case of the data concatenation approach. How-



ever, here the system learns from the data domain
by domain. We call this technique model stacking.

The model stacking and fine-tuning approaches
have the advantage of seeing the in-domain data
in the end of training, thus making the system pa-
rameters more optimized for the in-domain data.
They also provide flexibility in extending an exist-
ing model to any new domain without having to
retrain the complete system again on the available
corpora.

2.3 Data Selection
Building a model, whether concatenated or
stacked, on all the available data is computation-
ally expensive. An alternative approach is data
selection, where we select a part of the out-of-
domain data which is close to the in-domain data
for training. The intuition here is two fold: i)
the out-of-domain data is huge and takes a lot of
time to train on, and ii) not all parts of the out-
of-domain data are beneficial for the in-domain
data. Training only on a selected part of the out-of-
domain data reduces the training time significantly
while at the same time creating a model closer to
the in-domain.

In this work, we use the modified Moore-Lewis
(Axelrod et al., 2011) for data selection. It trains
in- and out-of-domain n-gram models and then
ranks sequences in the out-of-domain data based
on cross-entropy difference. The out-of-domain
sentences below a certain threshold are selected
for training. Since we are dealing with several
out-of-domain corpora, we apply data selection
separately on each of them and build a concate-
nated system using in-domain plus selected out-
of-domain data as shown in Figure 1. Data selec-
tion significantly reduces data size thus improving
training time for NMT. However, finding the opti-
mal threshold to filter data is a cumbersome pro-
cess. Data selection using joint neural networks
has been explored in (Durrani et al., 2015). We ex-
plore data selection as an alternative to the above
mentioned techniques.

2.4 Multi-domain Ensemble
Out-of-domain data is generally available in larger
quantity. Training a concatenated system when-
ever a new in-domain becomes available is expen-
sive in terms of both time and computation. An
alternative to fine-tuning the system with new in-
domain is to do ensemble of the new model with
the existing model. The ensemble approach brings

the flexibility to use them during decoding without
a need of retraining and fine-tuning.

Consider N models that we would like to use to
generate translations. For each decoding step, we
use the scores over the vocabulary from each of
these N models and combine them by averaging.
We then use these averaged scores to choose the
output word(s) for each hypothesis in our beam.
The intuition is to combine the knowledge of the
N models to generate a translation. We refer
to this approach as balanced ensemble later on.
Since here we deal with several different domains,
averaging scores of all the models equally may not
result in optimum performance. We explore a vari-
ation of balanced ensemble called weighted en-
semble that performs a weighted average of these
scores, where the weights can be pre-defined or
learned on a development set.

Balanced ensemble using several models of a
single training run saved at different iterations
has shown to improve performance by 1-2 BLEU
points (Sennrich et al., 2016a). Here our goal is
not to improve the best available system but to
benefit from individual models built using sev-
eral domains during a single decoding process.
We experiment with both balanced ensemble and
weighted ensemble under the multi-domain condi-
tion only.2

3 Experimental Design

3.1 Data

We experiment with Arabic-English and German-
English language pairs using the WIT3 TED cor-
pus (Cettolo, 2016) made available for IWSLT
2016 as our in-domain data. For Arabic-English,
we take the UN corpus (Ziemski et al., 2016) and
the OPUS corpus (Lison and Tiedemann, 2016)
as out-of-domain corpora. For German-English,
we use the Europarl (EP), and the Common Crawl
(CC) corpora made available for the 1st Confer-
ence on Statistical Machine Translation3 as out-
of-domain corpus. We tokenize Arabic, German
and English using the default Moses tokenizer. We
did not do morphological segmentation of Ara-
bic. Instead we apply sub-word based segmenta-
tion (Sennrich et al., 2016b) that implicitly seg-

2Weighted fusion of Neural Networks trained on differ-
ent domains has been explored in (Durrani et al., 2016) for
phrase-based SMT. Weighted training for Neural Network
Models has been proposed in (Joty et al., 2015).

3http://www.statmt.org/wmt16/translation-task.html



Arabic-English
Corpus Sentences Tokar Token

TED 229k 3.7M 4.7M
UN 18.3M 433M 494M
OPUS 22.4M 139M 195M

German-English
Corpus Sentences Tokde Token

TED 209K 4M 4.2M
EP 1.9M 51M 53M
CC 2.3M 55M 59M

Table 1: Statistics of the Arabic-English and
German-English training corpora in terms of Sen-
tences and Tokens. EP = Europarl, CC = Common
Crawl, UN = United Nations.

ment as part of the compression process.4 Table
1 shows the data statistics after running the Moses
tokenizer.

We use a concatenation of dev2010 and tst2010
sets for validation during training. Test sets
tst2011 and tst2012 served as development sets to
find the best model for fine-tuning and tst2013 and
tst2014 are used for evaluation. We use BLEU
(Papineni et al., 2002) to measure performance.

3.2 System Settings

We use the Nematus tool (Sennrich et al., 2017) to
train a 2-layered LSTM encoder-decoder with at-
tention (Bahdanau et al., 2015). We use the default
settings: embedding layer size: 512, hidden layer
size: 1000. We limit the vocabulary to 50k words
using BPE (Sennrich et al., 2016b) with 50,000
operations.

4 Results

In this section, we empirically compare several ap-
proaches to combine in- and out-of-domain data to
train an NMT system. Figure 2 and Figure 3 show
the learning curve on development sets using var-
ious approaches mentioned in this work. We will
go through them individually later in this section.

4.1 Individual Systems

We trained systems on each domain individually
(for 10 epochs)5 and chose the best model using
the development set. We tested every model on the

4Sajjad et al. (2017) showed that using BPE performs
comparable to morphological tokenization (Abdelali et al.,
2016) in Arabic-English machine translation.

5For German-English, we ran the models until they con-
verged because the training data is much smaller compared to
Arabic-English direction

Arabic-English
TED UN OPUS

tst13 23.6 22.4 32.2
tst14 20.5 17.8 27.3
avg. 22.1 20.1 29.7

German-English
TED CC EP

tst13 29.5 29.8 29.1
tst14 23.3 25.7 25.1
avg. 26.4 27.7 27.1

Table 2: Individual domain models evaluated on
TED testsets

in-domain testsets. Table 2 shows the results. On
Arabic-English, the system trained on the out-of-
domain data OPUS performed the best. This is due
to the large size of the corpus and its spoken nature
which makes it close to TED in style and genre.
However, despite the large size of UN, the system
trained using UN performed poorly. The reason is
the difference in genre of UN from the TED cor-
pus where the former consists of United Nations
proceedings and the latter is based on talks.

For German-English, the systems built using
out-of-domain corpora performed better than the
in-domain corpus. The CC corpus appeared to be
very close to the TED domain. The system trained
on it performed even better than the in-domain
system by an average of 2 BLEU points.

4.2 Concatenation and Fine-tuning

Next we evaluated how the models performed
when trained on concatenated data. We mainly
tried two variations: i) concatenating all the avail-
able data (ALL) ii) combine only the available out-
of-domain data (OD) and later fine-tune the model
on the in-domain data. Table 3 shows the results.
The fine-tuned system outperformed a full con-
catenated system by 1.8 and 2.1 average BLEU
points in Arabic-English and German-English sys-
tems respectively.

Looking at the development life line of these
systems (Figures 2, 3), since ALL has seen all of
the data, it is better than OD till the point OD
is fine-tuned on the in-domain corpus. Interest-
ingly, at that point ALL and OD→TED have seen
the same amount of data but the parameters of the
latter model are fine-tuned towards the in-domain
data. This gives it average improvements of up to
2 BLEU points over ALL.

The ALL system does not give any explicit



Figure 2: Arabic-English system development life line evaluated on development set tst-11 and tst-12.
Here, ALL refers to UN+OPUS+TED, and OD refers to UN+OPUS

Arabic-English
TED ALL OD→TED ALL→TED

tst13 23.6 36.1 37.9 38.0
tst14 20.5 30.2 32.1 32.2
avg. 22.1 33.2 35.0 35.1

German-English
TED ALL OD→TED ALL→TED

tst13 29.5 35.7 38.1 38.1
tst14 23.3 30.8 32.8 32.9
avg. 28.0 33.3 35.4 35.5

Table 3: Comparing results of systems built on
a concatenation of the data. OD represents a
concatenation of the out-of-domain corpora and
ALL represents a concatenation of OD and the in-
domain data. → sign means fine-tuning

weight to any domain 6 during training. In order to
revive the in-domain data, we fine-tuned it on the
in-domain data. We achieved comparable results
to that of the OD→TED model which means that
one can adapt an already trained model on all the
available data to a specific domain by fine tuning
it on the domain of interest. This can be helpful in
cases where in-domain data is not known before-
hand.

4.3 Model Stacking

Previously we concatenated all out-of-domain
data and fine-tuned it with the in-domain TED
corpus. In this approach, we picked one out-of-
domain corpus at a time, trained a model and fine-

6other than the data size itself

tuned it with the other available domain. We re-
peated this process till all out-of-domain data had
been used. In the last step, we fine-tuned the
model on the in-domain data. Since we have a
number of out-of-domain corpora available, we
experimented with using them in different permu-
tations for training and analyzed their effect on the
development sets. Figure 2 and Figure 3 show
the results. It is interesting to see that the order
of stacking has a significant effect on achieving
a high quality system. The best combination for
the Arabic-English language pair started with the
UN data, fine-tuned on OPUS and then fine-tuned
on TED. When we started with OPUS and fine-
tuned the model on UN, the results dropped drasti-
cally as shown in Figure 2 (see OPUS→UN). The
model started forgetting the previously used data
and focused on the newly provided data which
is very distant from the in-domain data. We saw
similar trends in the case of German-English lan-
guage pair where CC→EP dropped the perfor-
mance drastically. We did not fine-tune CC→EP
and OPUS→UN on TED since there was no better
model to fine-tune than to completely ignore the
second corpus i.e. UN and EP for Arabic and Ger-
man respectively and fine-tune OPUS and CC on
TED. The results of OPUS→TED and CC→TED
are shown in Figures.

Comparing the OPUS→TED system with
the UN→OPUS→TED system, the result of
OPUS→TED are lowered by 0.62 BLEU points
from the UN→OPUS→TED system. Similarly,



Figure 3: German-English system development life line evaluated on development set tst-11 and tst-12.
Here, ALL refers to EP+CC+TED, and OD refers to EP+CC

we saw a drop of 0.4 BLEU points for German-
English language pair when we did not use EP
and directly fine-tuned CC on TED. There are two
ways to look at these results, considering quality
vs. time: i) by using UN and EP in model stack-
ing, the model learned to remember only those
parts of the data that are beneficial for achieving
better translation quality on the in-domain devel-
opment sets. Thus using them as part of the train-
ing pipeline is helpful for building a better system.
ii) training on UN and EP is expensive. Dropping
them from the pipeline significantly reduced the
training time and resulted in a loss of 0.62 and 0.4
BLEU points only.

To summarize, model stacking performs best
when it starts from the domain furthest from the
in-domain data. In the following, we compare it
with the data concatenation approach.

4.4 Stacking versus Concatenation

We compared model stacking with different forms
of concatenation. In terms of data usage, all mod-
els are exposed to identical data. Table 4 shows
the results. The best systems are achieved using
a concatenation of all of the out-of-domain data
for initial model training and then fine-tuning the
trained model on the in-domain data. The concate-
nated system ALL performed the lowest among all.

ALL learned a generic model from all the avail-
able data without giving explicit weight to any par-
ticular domain whereas model stacking resulted in
a specialized system for the in-domain data. In
order to confirm the generalization ability of ALL

Arabic-English
ALL OD→TED UN→OPUS→TED

tst13 36.1 37.9 36.8
tst14 30.2 32.1 31.2
avg. 33.2 35.0 34.0

German-English
ALL OD→TED EP→CC→TED

tst13 35.7 38.1 36.8
tst14 30.8 32.8 31.7
avg. 33.3 35.4 34.3

Table 4: Stacking versus concatenation

vs. model stacking, we tested them on a new do-
main, News. ALL performed 4 BLEU points better
than model stacking in translating the news NIST
MT04 testset. This concludes that a concatenation
system is not an optimum solution for one partic-
ular domain but is robust enough to perform well
in new testing conditions.

4.5 Data Selection

Since training on large out-of-domain data is time
inefficient, we selected a small portion of out-of-
domain data that is closer to the in-domain data.
For Arabic-English, we selected 3% and 5% from
the UN and OPUS data respectively which consti-
tutes roughly 2M sentences. For German-English,
we selected 20% from a concatenation of EP and
CC, which roughly constitutes 1M training sen-
tences.7

7These data-selection percentages have been previously
found to be optimal when training phrase-based systems us-
ing the same data. For example see (Sajjad et al., 2013).



Arabic-English German-English
ALL Selected ALL Selected

tst13 36.1 32.7 35.7 34.1
tst14 30.2 27.8 30.8 29.9
avg. 33.2 30.3 33.3 32.0

Table 5: Results of systems trained on a concate-
nation of selected data and on a concatenation of
all available data

We concatenated the selected data and the in-
domain data to train an NMT system. Table 5
presents the results. The selected system is worse
than the ALL system. This is in contrary to the re-
sults mentioned in the literature on phrase-based
machine translation where data selection on UN
improves translation quality (Sajjad et al., 2013).
This shows that NMT is not as sensitive as phrase-
based to the presence of the out-of-domain data.

Data selection comes with a cost of reduced
translation quality. However, the selected system
is better than all individual systems shown in Table
2. Each of these out-of-domain systems take more
time to train than a selected system. For example,
compared to individual UN system, the selected
system took approximately 1/10th of the time to
train. One can look at data selected system as a
decent trade-off between training time and trans-
lation quality.

4.6 Multi-domain Ensemble

We took the best model for every domain ac-
cording to the average BLEU on the develop-
ment sets and ensembled them during decoding.
For weighted ensemble, we did a grid search and
selected the weights using the development set.
Table 6 presents the results of an ensemble on
the Arabic-English language pair and compares
them with the individual best model, OPUS, and a
model built on ALL. As expected, balanced ensem-
ble (ENSb) dropped results compared to the best
individual model. Since the domains are very dis-
tant, giving equal weights to them hurts the over-
all performance. The weighted ensemble (ENSw)
improved from the best individual model by 1.8
BLEU points but is still lower than the concate-
nated system by 1.7 BLEU points. The weighted
ensemble approach is beneficial when individ-
ual domain specific models are already available
for testing. Decoding with multiple models is
more efficient compared to training a system from
scratch on a concatenation of the entire data.

Arabic-English
OPUS ALL ENSb ENSw

tst13 32.2 36.1 31.9 34.3
tst14 27.3 30.2 25.8 28.6
avg. 29.7 33.2 28.9 31.5

Table 6: Comparing results of balanced ensemble
(ENSb) and weighted ensemble (ENSw) with the
best individual model and the concatenated model

4.7 Discussion
The concatenation system showed robust behavior
in translating new domains. Kobus et al. (2016)
proposed a domain aware concatenated system by
introducing domain tags for every domain. We
trained a system using their approach and com-
pared the results with simple concatenated system.
The domain aware system performed slightly bet-
ter than the concatenated system (up to 0.3 BLEU
points) when tested on the in-domain TED devel-
opment sets. However, domain tags bring a limita-
tion to the model since it can only be tested on the
domains it is trained on. Testing on an unknown
domain would first require to find its closest do-
main from the set of domains the model is trained
on. The system can then use that tag to translate
unknown domain sentences.

5 Conclusion

We explored several approaches to train a neural
machine translation system under multi-domain
conditions and evaluated them based on three met-
rics: translation quality, training time and robust-
ness. Our results showed that an optimum in-
domain system can be built using a concatenation
of the out-of-domain data and then fine-tuning it
on the in-domain data. A system built on the con-
catenated data resulted in a generic system that is
robust to new domains. Model stacking is sensi-
tive to the order of domains it is trained on. Data
selection and weighted ensemble resulted in a less
optimal solution. The former is efficient to train
in a short time and the latter is useful when differ-
ent individual models are available for testing. It
provides a mix of all domains without retraining
or fine-tuning the system.
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