

What Is One Grain of Sand in the Desert?

Analyzing Individual Neurons in Deep NLP Models

Fahim Dalvi^{*} Nadir Durrani^{*} Hassan Sajjad^{*} Yonatan Belinkov Anthony Bau James Glass {faimaduddin,ndurrani,hsajjad}@qf.org.qa {belinkov,abau,glass}@mit.edu

1. Motivation

- Internal representations in deep neural network (NN) models are not well understood.
- Previous studies analyze full vector representations and do not inspect individual dimensions
- We study individual neurons in neural machine translation (NMT) and neural language modeling (NLM) via three questions:
 - 1. Do they contain interpretable linguistic information?
 - 2. Do they play an important role for obtaining high-quality translations?
 - 3. Can we manipulate the translation in desired ways by modifying specific neurons?
- Potential applications in model distillation and mitigating model bias.

2. Linguistic Correlation Method

Goal:

Identify linguistically motivated neurons in deep NLP models through auxiliary tasks. Example: Morphological or Semantic tagging

Approach:

- Extract neuron activations from the model for every input word.
- Train a classifier on extracted activations against some supervised task.
- Extract a ranking of the neurons using the trained weights.

10%

Bot

23.8

15.8

16.3

15.7

23.8

18.4

16.7

Тор

63.2

69.8

51.5

65.9

41.6

54.2

49.7

39.7

ALL

93.2

93.5

90.1

93.6

92.4

92.9

86.0

92.3

• Learned weights are representatives of which neurons are important for a property

Masking-out

15%

Bot

24.8

17.9

18.9

15.6

20.4

16.7

23.8 | 59.6

22.3 65.2

Top

73.0

78.3

65.3

78.0

53.6

66.1

51.7

21.9 56.8

20%

Bot

24.9

21.5

20.7

15.7

24.0

24.7

25.1

Top

79.4

84.1

74.2

88.2

72.4

67.2 16.9

 $\mathcal{L}(\theta) = -\sum \log P_{\theta}(\mathbf{l}_i | \mathbf{x}_i) + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2^2$

3. Evaluation via Ablation

Task

NLM

FR (POS)

EN (POS)

DE (POS)

FR (POS)

EN (POS)

EN (SEM)

DE (POS)

EN (SEM)

	French		Eng	glish	German	
	POS	Morph	POS	SEM	POS	Morph
MAJ	92.8	89.5	91.6	84.2	89.3	83.7
NMT NLM	93.2 92.4	88.0 90.1	93.5 92.9	90.1 86.0	93.6 92.3	87.3 86.5

Classifier accuracy when trained on activations of NMT and NML models. MAJ: local majority baseline

Classifier accuracy on different tasks using all neurons (ALL). Masking-out: all except top/bottom N% neurons

5. Visualizations

Supports the efforts of the Libyan authorities to recover funds misappropriated under the Qadhafi regime

(a) English Verb (#1902)

einige von Ihnen haben vielleicht davon gehört , dass ich vor ein paar Wochen eine Anzeige bei Ebay geschaltet habe .

(b) German Article (#590)

They also violate the relevant Security Council resolutions in particular resolution 2216 (2015) , and are consistent with the Houthis ' total rejection of the said resolution .

(c) Position Neuron (#1903)

Neuron	Top 10 words
#1925	August, July, January, September, October,
(Month)	presidential, April, May, February, December
#1960	no, No, not, nothing, nor, neither, or, none,
(Negation)	whether, appeal
#1590	50, 10, 51, 61, 47, 37, 48, 33, 43, 49
(Cardinality)	

Ranked list of words for some individual neurons in the EN-FR NMT model

4. Focussed vs. Distributed

Properties from various language pairs and tasks

Results:

25

- Open class properties such as Nouns and Named Entities are much more distributed across the network compared to closed properties.
- The model recognizes hierarchy in language and distributes neurons based on it.
 - E.g multiple neurons for different verb forms

Ablation Ctudios

5. Cross Model Correlation Method				7. Ablation Studies			
Min-Correlation	Linear Regression	SVCCA		-D-FR-EN Top -O-DE-EN Top -O-DE-EN Top -O-DE-EN Bottom -C-EN-FR Top -C-EN-FR Bottom	Effect of pourop		

• Motivation: Linguistic correlation method may not be able to identify all the important neurons for the model itself •Hypothesis: Different NMT models learn similar properties, and therefore should have similar neurons. • Approach: Rank neurons by strength of their correlations with neurons from other networks, on several levels.

8. Controlling Translations

• Hypothesis: if a neuron matters to the model, then we can manipulate the translation by modifying its activations

Method

- Encode the source sentence as usual Ο
- Before decoding, replace the activation of a particular neuron with a value of α Ο
- Observe how translation changes with different α values Ο

Tense manipulation

Max-Correlation

- Changing tense (past->present / present->past) in several languages Ο
- Changing phrasing in Arabic translation beyond the verb Ο
- Chinese is hard to manipulate (needs high α), possibly because tense is usually not marked Ο

$ \alpha$	Translation	Tense	
Arabic -/+10	وأيدت\وتؤيد اللجنة {جهود\الجهود التي تبذلها} السلطات	past/present	We were able to control
French -/-20	Le Comité <u>a appuyé/appuie</u> les efforts des autorités	past/present	tense (up to 67%), but
Spanish -/-3/0	El Comité apoyó/apoyaba/apoya los esfuerzos de las autoridades	past/impf./present	gender and number are

Also See: Identifying and Controlling Important Neurons in Neural Machine Translation, Accepted at ICLR'19 NeuroX: A Toolkit for Analyzing Individual Neurons in Neural Networks, AAAI'19 Demonstration

Acknowledgements: This research was carried out in collaboration between the HBKU Qatar Computing Research Institute (QCRI) and the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) -- *denotes equal contribution

neurons in the