Neuron-level Interpretation of Deep NLP Models: A Survey

Nadir Durrani Fahim Dalvi Hassan Sajjad hsajjad@dal.ca {ndurrani, faimaduddin}@hbku.edu.qa

Neuron Interpretation aims to understand

How is knowledge structured within neural network representations?

Methods



Definitions

- Neuron: Output of a single dimension from any neural network component (blocks, layers, attention)
- Concept: A group of words that are coherent w.r.t a linguistic property (Nouns, Professions, etc)

Classification Criteria:

- Does the method provide global or local interpretation?
- Input and Output e.g. a set of neurons or concepts
- Scalability: Can the method be scaled to a larger set of neurons?
- Does the method require human-in-the-loop?
- Does the method require supervised data?
- Is the interpretation connected to **model's prediction**?

	Scope	Input	Output	Scalability	HITL	Supervision	Causation
Visualization							
Karpathy et al. (2015)	local	neuron	concept	low	yes	no	no
Corpus-based methods							
Concept Search							
Kádár et al. (2017)	global	neuron	concept	low	yes	no	no
Na et al. (2019)	global	neuron	concept	high	no	no	no
Neuron Search							
Mu and Andreas	global	concept	neurons	high	no	yes	no
(2020); Suau et al.							
(2020); Antverg and							
Belinkov (2022)							
Probing-based methods				المؤملة			
Linear (Dalvi et al.,	global	concept	neurons	high	no	yes	no
2019) Gaussian (Hennigen	global	concent	neurone	high	no	VAC	no
et al., 2020)	giodai	concept	neurons	ingii	110	yes	no
Causation-based method	ds						
Ablation (Lakretz et al.,	both	concept/	neurons	medium	no	no	yes
2019)	0044	class	110 011 0110				700
Knowledge attribution	local	concept/	neurons	high	no	no	yes
(Dai et al., 2021)		class					
Miscellaneous methods							
Corpus generation	global	neuron	concept	low	yes	no	no
(Poerner et al., 2018)							
Matrix factorization	local	neurons	neurons	low	yes	no	no
(Alammar, 2020)							
Clustering (Dalvi et al.,	global	neurons	neurons	high	yes	no	no
2020)							
Multi model search	global	neurons	neurons	high	yes	no	no
(Bau et al., 2019)							

Comparison of various neuron interpretation methods

Findings

Sentiment Intensification

"I like this movie a lot" 'the movie is **incredibly good**" Negation

"... but **not** that"

Core Linguistic Concepts

Part of Speech Information

Polysemous Behavior

Tense switch neurons

Information Distribution

Syntax is captured at higher layers Many neurons learn the Lower layers within an FFNN block house more salient neurons

Redundancy

same concept

Specific Semantics

Electronic items:

"camera, laptops,cables"

Salad items: "broccoli, noodles"

Law: "law, legal, case"

Phrasal Neurons

Phrasal neurons: "horse racing"

Syntactic Concepts

Positional Information **Parenthesis** Alignment to Syntactic parses Complex Semantic Concepts

Causativity neurons

Architectural Differences

Auto-encoder vs generative models Finetuned Models

Fine-tuning forces core linguistic knowledge into neurons from lower layers

Applications

Model Control

- Changing tense in output translations from present to past-tense in an NMT model
- Model Distillation
 - Efficient Feature-based transfer learning
- Domain Adaptation
 - Prune unimportant neurons or finetune with frozen salient neurons
- Compositional Explanations

Open Challenges

Gap between "what is learned" and "how is it used"

Lack of evaluation benchmarks

Choice of "best" neuron interpretation method not clear

Reliance on pre-defined/annotated corpora

