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Abstract

Transformer-based NLP models are trained using billions of parameters, lim-

iting their applicability in computationally constrained environments. While

the number of parameters generally correlates with performance, it is not clear

whether the entire network is required for a downstream task. Motivated by

the recent work on pruning and distilling pre-trained models, we explore strate-

gies to drop layers in pre-trained models, and observe the effect of pruning on

downstream GLUE tasks. We were able to prune BERT, RoBERTa and XLNet

models up to 40%, while maintaining up to 98% of their original performance.

Additionally we show that our pruned models are at par with those built using

knowledge distillation, both in terms of size and performance. Our experiments

yield interesting observations such as: (i) the lower layers are most critical to

maintain downstream task performance, (ii) some tasks such as paraphrase de-

tection and sentence similarity are more robust to the dropping of layers, and

(iii) models trained using different objective function exhibit different learning

patterns and w.r.t the layer dropping.1

Keywords: pre-trained transformer models, efficient transfer learning,

interpretation and analysis
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1. Introduction

Pre-trained Transformer models have achieved state-of-the-art performance

on natural language processing tasks and have been adopted as feature extrac-

tors for solving downstream tasks such as question answering, natural language

inference, and sentiment analysis. The current state-of-the-art Transformer-

based pre-trained models consist of dozens of layers and millions of parameters.

While deeper and wider models yield better performance, they also need large

GPU/TPU memory. For example, BERT-large [1] is trained with 335 million

parameters, and requires at least 24 GB of GPU memory to load. The larger

size of these models limits their applicability in time- and memory-constrained

environments.

Several methods have been proposed to reduce the size of pre-trained mod-

els. Notable approaches include pruning parts of the network after training [2,

3, 4], reduction through weight factorization and sharing [5], compression via

knowledge-distillation [6] and quantization [7, 8]. Our work falls under the class

of pruning methods.

The central argument governing pruning methods is that deep neural models

are over-parameterized and that not all parameters are strictly needed, espe-

cially at the inference time. For example, previous research has shown that most

of the attention heads can be removed [9, 3] or reallocated [10] without signif-

icantly impacting performance. Gordon et al. [11] pruned the least important

weights in the network. We build our work based on similar observations, but

we are interested in (i) whether it is necessary to use all layers of a pre-trained

model for downstream tasks, and if not, (ii) which layers are necessary to keep

in order to maintain good task-specific performance while achieving efficiency

in transfer learning.

Motivated by recent findings in representation learning, we propose novel

strategies to drop layers in pre-trained models. Voita et al. [12] showed that

the top layers are biased towards the pre-training objective, leading us to ques-

tion whether they are necessary for downstream tasks. Michel et al. [9], Dalvi
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et al. [13] discussed over-parameterization and the redundancy in pre-trained

models, leading us to question whether adjacent layers contain redundant infor-

mation. More concretely, we drop top, bottom, middle, or alternate layers in the

network. We additionally present methods to find layers that contribute least

in the network by using their activation patterns and weights. We apply our

strategies on four state-of-the-art pre-trained models, BERT [1], RoBERTa [14],

ALBERT [5] and XLNet [15]. The first three are auto-encoders, while XLNet is

an auto-regressive model. ALBERT presents an interesting case in the mix as

its layers share parameters. We additionally experiment using DistilBERT to

analyze whether a distilled model can be pruned further. We evaluate against

GLUE benchmark [16] a suite of language understanding tasks. Our findings

are summarized below:

• We propose practical strategies to drop layers in pre-trained models for

efficient transfer learning.

• We show that dropping top layers works consistently well across different

tasks and pre-trained models, e.g., yielding 40% reduction in size while

preserving up to 98.2% of the performance.

• Our reduced models perform on par with models built using knowledge

distillation in terms of accuracy, model size and inference speed, without

requiring costly training of a new model.

• One-third of a distilled models can also be pruned successfully with an

average loss of 0.75 points

• Despite having cross-layer parameter sharing, ALBERT can still be pruned

for efficient inference with a small drop in performance.

• Certain downstream tasks require as few 3 layers to maintain performance

within 1% threshold.

• Comparing architectures, models show different learning dynamics. For

example, compared to BERT, RoBERTa and XLNet learn task-specific
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knowledge earlier in the network and are thus more robust to layer-dropping.

Contribution. While a number of studies partially overlap with the strategies

and the findings presented in this work, this is the first work that thoroughly

investigates the effect of various layer-dropping methods using a variety of pre-

trained models and on a large number of tasks. We showed that i) models

have different learning dynamics, ii) a smaller close to optimal network can be

achieved by optimizing the number of layers to drop with respect to the task

at hand, iii) a distilled model can also benefit from layer-dropping. Our work

recommends to use top layer-dropping as an essential baseline when building

distilled models. Moreover, it provides a cheap way to get smaller models of

any architecture rapidly, that are both memory and speed efficient.

2. Related Work

Efficient Pre-trained Models: Work done on exploring methods to down-

scale pre-trained models can be categorized into architecture-invariant compres-

sion [5, 17, 8], knowledge distillation [18, 6], and pruning [11, 19].

Quantization [7, 8], an architecture-invariant method, reduces the numerical

precision of the weights of the model to fewer bits. Knowledge distillation (KD)

also known as student-teacher model [20] trains a smaller model that mimics

the behavior of the larger model. Researchers have experimented with learning

from the outputs of the encoder layers [21, 22], from the output logits [6, 23],

and from the attention maps [22, 24]. Another distinction is between general-

purpose distilled models [6, 24] and task-specific ones [22, 25, 23, 21, 26].

Pruning methods involve removing some parts of the networks that are either

redundant or less relevant to the task at hand. [11, 19, 27] pruned the least

important weights in the network. Michel et al. [9], Voita et al. [3] demonstrated

that most of the attention heads can be pruned at test time, which reduces the

computation, and speeds up inference. Fan et al. [28] introduced LayerDrop

during training that resulted in pre-trained models that are robust towards

dropping of layers at inference time. Our work is similar to them as we also
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remove layers from the network. But we show that layers can be dropped

safely from the pre-trained models without the need for additional training

using LayerDrop. Nevertheless our strategies can also be applied to a model

trained using LayerDrop.

Recently, Peer et al. [29] proposed a greedy layer pruning method that drops

layers based on their independent performance on the end task. Their assump-

tion is that a local decision about a layer aligns with a globally correct selection

of layers. We demonstrate that our results are comparable to theirs, but we

need no additional training to find an optimal set of layers.

Sun et al. [21], Xu et al. [30] used the bottom six layers of the BERT-base

model to initialize the student model. This is similar to one of our strategies.

However, their performance is much lower compared to our method. Moreover,

we provide a comprehensive evaluation of our strategies on four pre-trained

models to prove their efficacy in reducing the size of the network.

Liu et al. [31], Schwartz et al. [32], Xin et al. [33], Zhou et al. [34] speed up

the inference time by introducing dynamic exiting strategies. The limitation of

their work are the memory footprints of the model that remain identical to the

original model.

Representation analysis: A number of studies have analyzed representa-

tions of pre-trained models at layer-level and showed that they learn linguistic

information [35, 36, 37, 38, 39, 40, 41, 42, 43]. Belinkov et al. [44], Sajjad

et al. [45] provided a comprehensive literature review of such work. While the

representation analysis uncovers, what linguistic properties different layers cap-

ture, they do not reflect which layers are important for transfer learning to a

downstream task. Recently, Tamkin et al. [46], Merchant et al. [47], Durrani

et al. [48] attempted to address this by analyzing layer-wise transferability of

features during fine-tuning. Tamkin et al. [46] reinitialized individual layers of

pre-trained model and observed the effect on the fine-tuning performance. Mer-

chant et al. [47] used probing classifier, layer-wise similarity and layer-ablation

for their analysis. Our work is similar to their layer-ablation study which they

carried out to understand the difficulty of a downstream task, but the premise
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Figure 1: Illustration of layer-dropping strategies. K represents the number of layers that are

dropped. For example, K = 4 in the top-layer strategy means top four layers of the model are

dropped. In the contribution-based dropping, we select layers based on a similarity threshold.

The number mentioned in the figure e.g. [2,3] shows the layers which are dropped based on

the similarity threshold.

of our work is very different. We gauge the importance of various subsets of

layers with respect to the performance on downstream tasks, to achieve efficient

models. Durrani et al. [48] used layer-wise and neuron probing classifiers [49]

and showed that core-linguistic knowledge is preserved in the lower layers of

fine-tuned models. This resonates with our empirical finding that shows that

higher layers can be safely pruned for efficient transfer learning.

3. Methodology

Consider a pre-trained language model M with an embedding layer E0 and

L encoder layers: {l1, l2, . . . , lL}. We probe whether it is necessary to keep all

layers of the network for downstream tasks. We explore six strategies, that we

describe below (also shown in Figure 1), to drop encoder layers from the model.

Each pruning regime is followed by task-specific fine-tuning to analyze the effect

of layer-dropping on the performance of the task.

3.1. Top-Layer Dropping

The top layers in pre-trained models are specialized towards the underlying

objective function [12]. Zhang et al. [50] reinitialized the upper layers when

fine-tuning towards GLUE task. We hypothesize that the top layers may not be
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important when fine-tuning towards the a downstream task. In this strategy,

we drop top K layers from the model. The output of layer lL−K serves as the

last layer of the reduced network. Then, a task-specific layer is added on top of

this layer to perform task-specific fine-tuning. Figure 1 shows an example with

dropping top 4 and 6 layers.

3.2. Alternate Dropping

Deep neural networks are innately redundant. Sun et al. [21] and Jiao

et al. [22] amalgamated information from adjacent layers of the teacher model

into a single layer of the student model. We hypothesize that neighbouring

layers preserve similar information and may be dropped safely without any

substantial loss of information. We drop N alternating odd or even layers from

top to bottom of the network. For example in a 12-layer model with K = 4,

we consider two sets of alternate layers: Odd-alternate Dropping – {5,7,9,11}

and Even-alternate Dropping – {6,8,10,12}, see Figure 1 for illustration. When

dropping an in-between layer li, the output of the previous layer li−1 becomes

the input of the next layer li+1, causing a mismatch in the expected input to

li+1. However, we hope that during task-specific fine-tuning, the model will

recover from this discrepancy.

3.3. Parameter-Based Dropping

In this approach, we estimate the importance of a given layer based on the

model parameters. More specifically, we rank the layers based on their weights.

We tested two hypotheses: (i) higher magnitude of the weights signals higher

layer importance, (ii) higher variance of the weights corresponds to higher layer

importance. We refer to the former as Aggregation Method, where we aggre-

gate the weights of a layer, and we call the latter a Variance Method, where we

calculate the variance of each layer. We drop the layers with the lowest aggre-

gation or variance scores. Note that a transformer block has various sub-layers,

but in our experiments we only used the final weights. We leave experiments

with other layers within a transformer block as a possible direction for future

work.
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3.4. Contribution-Based Dropping

Our next strategy is based on the idea that a layer contributing below a

certain threshold might be a good candidate for dropping. We define the con-

tribution of a layer li in terms of the cosine similarity between its input and

its output representations. A layer li with a high similarity (above a certain

threshold) indicates that its output has not changed much from its input, and

therefore it can be dropped from the network. More concretely, in the forward

pass, we calculate the cosine similarity between the representation of the sen-

tence token (CLS) before and after each layer. We average the similarity scores

of each layer over the development set, and select layers that have an aver-

age similarity above a certain threshold for dropping. This contribution-based

strategy can be seen as a principled variation of alternate dropping.

3.5. Symmetric Dropping

The bottom layers are closer to the input while the top layers are closer

to the output. It is possible that both the top layers and the bottom layers

are more important than the middle layers. The Symmetric dropping strategy

retains the top and the bottom X layers, and drop K middle layers, where

2X +K = L. For example, in a 12-layer model, if K = 6, we retain three top

and three bottom layers, dropping layers 4–9. The output of layer 3 would then

serve as an input to layer 10.

3.6. Bottom-Layer Dropping

Previous work on analyzing layers in Neural Networks [35, 41, 39, 51, 52] has

shown that the lower layers model local interactions between words (which is

important for morphology and lexical semantics), thus providing essential input

to the higher layers. Removing lower layers could be therefore catastrophic. We

still perform these experiments for the sake of completeness. We remove the

bottom K layers of the model. The output of the embedding layer l0 serves as

an input to layer lK+1 of the original model.
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Task Description Train Dev

SST-2 Sentiment analysis 67349 872

MRPC Microsoft Research paraphrase corpus 3668 408

MNLI Natural language inference 392702 9815

QNLI Question natural language inference 104743 5463

QQP Quora question pairs 363846 40430

RTE Recognizing textual entailment 2490 277

STS-B Semantic textual similarity 5749 1500

Table 1: Data statistics of the GLUE tasks. All tasks are binary classification tasks, except

for STS-B which is a regression task. Recall that the test sets are not publicly available, and

hence we use development set to report results.

4. Experimental Setup

Datasets. We evaluated our strategies on General Language Understanding

Evaluation (GLUE) tasks [16] tasks, which serves as a defacto standard to eval-

uate pre-trained language models. Table 1 provides statistics of each dataset.

More specifically, we evaluated on the following tasks: SST-2 for sentiment anal-

ysis with the Stanford sentiment treebank [53], MNLI for natural language in-

ference [54], QNLI for Question NLI [55], QQP for Quora Question Pairs,2 RTE

for recognizing textual entailment [56], MRPC for Microsoft Research para-

phrase corpus [57], and STS-B for the semantic textual similarity benchmark

[58]. We left out WNLI, due to the irregularities in its dataset, as also reported

by others,3 as well as CoLA due to large variance and unstable results across

fine-tuning runs.

Models. We experimented with three state-of-the-art 12-layered pre-trained mod-

els 4 BERT [1], RoBERTa [14] and XLNet [15]. We additionally experimented

using a 12-layered ALBERT [5] model and a distilled model, DistilBERT [6].

2http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
3http://gluebenchmark.com/faq
4For the sake of clarity when the trends are similar across models, we present the results

of selected models only.

9

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://gluebenchmark.com/faq


Our selection of models encourage interesting comparison between different

types of models such as auto-regressive vs. auto-encoder and a large model

vs. its distilled version. All experiments are conducted using the transformers

library [59]. We used the default settings and did not optimize the parameters.

We limit our experiments to the base versions of the transformers as we could

not experiment with BERT-large or XLNet-large due to memory limitations.5

However, our strategies are straightforward to apply to models of any depth.

End-to-End Procedure. Given a pre-trained model, we drop layers using one

of the strategies described in Section 3. We then performed task-specific fine-

tuning using GLUE training sets for three epochs as prescribed by [1]6 and

evaluated on the official devsets.

5. Evaluation Results

We experimented with dropping K number of layers where K = 2, 4, 6 in

BERT, RoBERTa and XLNet, and K = 1, 2, 3 in DistilBERT (a 6-layer model).

As an example, for K = 2 on a 12-layer model, we drop the following layers:

top strategy – {11, 12}; bottom strategy – {1, 2}; even-alternate – {10, 12};

odd-alternate – {9, 11}; symmetric – {6, 7}. For the parameter-based strategy,

we calculate the score of every layer based on the aggregated weights and the

variance in the weights, and we drop the layers with the lowest score. In the

contribution-based strategy, the dropping of layers is dependent on a similarity

threshold. We calculate the similarity between input and output of each layer

and remove layers with similarity above the threshold values of 0.95, 0.925 and

0.9. These values were chosen empirically. A threshold value below 0.9 or above

5In order to fit large models in our TitanX 12GB GPU cards, we tried to reduce the

batch size, but this yielded poor performance, see https://github.com/google-research/

bert#out-of-memory-issues.
6We experimented with using more epochs, especially for dropping strategies that exclude

in-between layers, in order to let the weight matrix adapt to the changes. However, we did

not see any benefit in going beyond three epochs.
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0.95 resulted in either more than half of the network being considered as similar,

or none of the layers to be similar.

5.1. Comparing Strategies

Figure 2 presents average classification performance of BERT and XLNet

using various layer-dropping strategies. We observe similar trends for RoBERTa

and DistilBERT and limit the presentation of results to two models here.

Top-layer dropping consistently outperforms other strategies when

dropping 6 layers. We dropped half of the top layers (yellow bars in the top

strategy) with an average loss of only 2.91 and 1.81 points for BERT and XLNet

respectively. The Bottom-layer dropping strategy performed the worst across all

models, as expected, showing that it is more damaging to remove information

from the lower layers of the network. The behavior of top and bottom dropping

is consistent across all models. It nicely connects with findings in representation

learning, i.e. lower layers learn core-linguistic phenomena and our results show

that they are important to maintain task-specific performance.

Parameter-based strategy using variance is the second best strat-

egy at K = 6. Compared to most of the other strategies presented in this

work, the parameter-based strategy makes a more informed decision based on

the parameters of the model, i.e., the weights. We found the variance-based

strategy to outperform the aggregation-based one, and thus we limit our discus-

sion to the former only. The variance-based method selected different layers to

drop for each model. The order of the six layers to drop is {1, 12, 8, 9, 11, 2} for

BERT, {11, 12, 6, 7, 5, 10} for RoBERTa and {11, 12, 7, 8, 9, 10} for XLNet. One

common observation here is that the last 2–3 layers and the middle layers of the

models can be removed safely with a small drop in performance (see the results

of the variance-based method in Figure 2). Moreover, BERT is an exception

where the first two contextualized layers {1, 2} are also selected to be removed.

This resulted in a huge loss in performance (see the results for BERT when

dropping 6 layers based on the variance-based method). Interestingly, dropping

6-layers of XLNet resulted in a model that was identical to that of the top-layer
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strategy, i.e., removing the top-6 layers. RoBERTa presents an interesting case

where the parameter-based strategy resulted in a drop of the middle layers and

of the top layers, while keeping the lower and the higher middle layers. The

average results for RoBERTa when using the variance-based method are lower

by 0.73 point only compared to the top-layer method. The promising results of

the parameter-based method on two out of three models show its efficacy. Note

that our current exploration is limited to the parameters of the base models.

Fine-tuning substantially changes the parameters [48], which may result in a

task-wise informed dropping of layers. We did not try task-specific pruning as

the focus of our work is on task-agnostic efficient models.

Dropping top alternate layers is better than dropping top consec-

utive layers. The Odd-alternate dropping strategy gave better results than

the top at K = 2 (blue bars in the Odd-alternate strategy), across all the

tasks. Looking at the layers that were dropped: top – {11, 12}; even-alternate

– {10, 12}; odd-alternate – {9, 11}, we can say that (i) dropping last two con-

secutive layers {11, 12} is more harmful than removing alternate layers, and

(ii) keeping the last layer {9, 11} is more important than keeping the second

last layer with its alternate pair. At K = 6, the Alternate dropping strategies

show a large drop in the performance, perhaps due to removal of lower lay-

ers. Recall that our results from the bottom strategy showed lower layers to be

critical for transfer learning.

The Symmetric strategy gives importance to both top and bottom layers and

drops the middle layers. Dropping two middle layers from BERT degrades the

performance by 0.97 points and makes it the second best strategy at K = 2.

However, on XLNet the performance degrades drastically when dropping the

same set of layers. Comparing these two models, XLNet is sensitive to the

dropping of middle layers while BERT shows competitive results to the Top-

layer dropping strategy even after removing 4 middle layers. We analyze the

difference in the behavior of models in Section 6.

For Contribution-based strategy, we chose layers {3, 5} at threshold 0.95 and

{3, 5, 8, 9} at threshold 0.925 for BERT, and layers {9, 10, 11} at threshold 0.925
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(a) BERT

(b) XLNet

Figure 2: Average classification performance on GLUE tasks when using different layer-

dropping strategies and when removing different numbers of layers for BERT and XLNet.

Note that the contribution-based strategy selects layers based on the similarity threshold. In

some cases it does not select (2,4 or 6) number of layers, which results in some missing bars

in the figure. The horizontal red line represents the results using the full model.

and {8, 9, 10, 11} at threshold 0.9 for XLNet. Using a lower or a higher similarity

threshold resulted in dropping none or more than half of the layers in the network

respectively. For BERT, the contribution-based dropping did not work well since

the method chose a few lower layers for dropping. On the contrary, it worked

quite well on XLNet where higher layers were selected. This is in-line with the

findings of top and bottom strategy that all models are robust to dropping of

higher layers compared to dropping of lower layers.

The contribution-based strategy is based on the activations of each layer,

which is an input-dependent process. Depending on the nature of the input

or the task, the activation patterns will change. We suspect that this is one

of the reasons for the failure of the strategy. A strategy based on task-specific
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Drop. SST-2 MNLI QNLI QQP STS-B RTE MRPC

BERT

0/12 92.43 84.04 91.12 91.07 88.79 67.87 87.99

2/12 92.20 (0.23↓) 83.26 (0.78↓) 89.84 (1.28↓) 90.92 (0.15↓) 88.70 (0.09↓) 62.82 (5.05↓) 86.27 (1.72↓)

4/12 90.60 (1.83↓) 82.51 (1.53↓) 89.68 (1.44↓) 90.63 (0.44↓) 88.64 (0.15↓) 67.87 (0.00) 79.41 (8.58↓)

6/12 90.25 (2.18↓) 81.13 (2.91↓) 87.63 (3.49↓) 90.35 (0.72↓) 88.45 (0.34↓) 64.98 (2.89↓) 80.15 (7.84↓)

RoBERTa

0/12 92.20 86.44 91.73 90.48 89.87 68.95 88.48

2/12 93.46 (1.26↑) 86.53 (0.09↑) 91.23 (0.50↓) 91.02 (0.54↑) 90.21 (0.34↑) 71.84 (2.89↑) 89.71 (1.23↑)

4/12 93.00 (0.80↑) 86.20 (0.24↓) 90.57 (1.16↓) 91.12 (0.64↑) 89.77 (0.10↓) 70.40 (1.45↑) 87.50 (0.98↓)

6/12 91.97 (0.23↓) 84.44 (2.00↓) 90.00 (1.73↓) 90.91 (0.43↑) 88.92 (0.95↓) 64.62 (4.33↓) 85.78 (2.70↓)

XLNET

0/12 93.92 85.97 90.35 90.55 88.01 65.70 88.48

2/12 93.35 (0.57↓) 85.67 (0.30↓) 89.35 (1.00↓) 90.69 (0.14↑) 87.59 (0.42↓) 66.06 (0.36↑) 86.52 (1.96↓)

4/12 92.78 (1.14↓) 85.46 (0.51↓) 89.51 (0.84↓) 90.75 (0.20↑) 87.74 (0.27↓) 67.87 (2.17↑) 87.25 (1.23↓)

6/12 92.20 (1.72↓) 83.48 (2.49↓) 88.03 (2.32↓) 90.62 (0.07↑) 87.45 (0.56↓) 65.70 (0.00) 82.84 (5.64↓)

DistilBERT

0/6 90.37 81.78 88.98 90.40 87.14 60.29 85.05

1/6 90.37 (0.00) 80.41 (1.37↓) 88.50 (0.48↓) 90.33 (0.07↓) 86.21 (0.93↓) 59.93 (0.36↓) 84.80 (0.25↓)

2/6 90.25 (0.12↓) 79.41 (2.37↓) 86.60 (2.38↓) 90.19 (0.21↓) 86.91 (0.23↓) 62.82 (2.53↑) 82.60 (2.45↓)

3/6 87.50 (2.87↓) 77.07 (4.71↓) 85.78 (3.20↓) 89.59 (0.81↓) 85.19 (1.95↓) 58.48 (1.81↓) 77.45 (7.60↓)

Table 2: Task-wise performance for the top-layer dropping strategy using the official GLUE

development sets. Drop. represents the number of layers that are dropped in comparison to

the total number of layers in the model. The red numbers with downward arrow shows the

drop in performance in comparison to using the full model i.e. 0/12 and the blue numbers

with upward arrow shows the gain in performance.

contribution might yield a better performance. However, in this work we focused

on task-independent efficient models, leaving task-dependent models for future

work.

5.2. Task-wise Results

Top-layer strategy works consistently well for all models at K = 6. In the

rest of the paper, we discuss the results for the Top-layer strategy only, unless

specified otherwise. Table 27 presents the results for the individual GLUE tasks

7We use default settings provided in the Transformer library. This causes a slight mismatch

between some numbers mentioned in the original papers of each models and our paper.
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using the Top-layer strategy on three pre-trained models and a distilled model.

We observe the same trend as for the averaged results: for most of the tasks,

we can safely drop half of the top layers in BERT, RoBERTa and XLNet losing

only 1-3 points.

The paraphrase task (QQP) and sentence similarity task (STS-B)

are least affected by the dropping of layers. When dropping half of the

layers, there was no loss in performance for QQP on XLNet and RoBERTa, and

a loss of 0.72 only for BERT. Similarly, for STS-B we observed a decrease of

only 0.56, 0.95 and 0.34 points for XLNet, RoBERTa and BERT respectively.

In contrast, RTE and MRPC tasks show substantial change (gain/drop) in the

performance with layer-dropping when compared with using the full model (see

BERT and RoBERTa 0/12,2/12,4/12 results). This is due to the small size of

the dev sets, 408 and 277 instances for MRPC and RTE respectively. A few

right and wrong predictions cause a large variation in the overall score. We use

McNemar’s test at p=value=0.05, and we found these differences, such as 5.05

points drop in the performance of BERT for RTE, statistically insignificant.

Dropping top two layers for RoBERTa resulted in better perfor-

mance and stability. Interestingly, in several cases for RoBERTa, dropping

two layers resulted in better performance than using the full model. Moreover,

we observed that layer-dropping resulted in stable runs and was less prone to

initialization seed and batch size. We used default settings for all the model and

did not investigate the effect of parameter optimization on the performance of

the pre-trained and reduced models to have comparable results.

A distilled model can also be pruned successfully. We observed a

similar trend, dropping layers in DistilBERT compared to BERT model. It is

interesting to see that an already distilled version of the model can be further

pruned by a third, with an average loss of 0.75 points only. However, dropping

half of its layers drastically degrades the performance on several tasks. Schwartz

et al. [32] also showed that pruning is orthogonal to model distillation.
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5.3. Memory and Speed Comparison

Dropping layers reduces the number of parameters in the network, signifi-

cantly speeding up the task-specific fine-tuning and the inference time. Table 3

compares the number of parameters, and the speed up in the fine-tuning and

decoding time, versus the loss in performance. We see that dropping top half

of the layers of the network, reduced the number of parameters by 40%, speed-

ing up fine-tuning and inference by 50% with average performance loss between

0.89–2.91 points. The results for RoBERTa are even remarkable; as with all the

memory and speed improvements, the average performance dropped by only 0.89

points. Dropping 4 layers (which gives a speed-up of 33%), RoBERTa achieved

a performance close to dropping no layers. XLNet also showed robustness to

the drop of top 4 layers and the performance dropped by only 0.23 points. It is

worth noting that a better trade-off between computational efficiency and loss

in performance can be achieved by optimizing for a specific task. For example

QQP maintained performance within 1% on XLNet when 9 layers were dropped

(See Table 4). This corresponds to 60% reduction in the number of parameters

and 80% reduction in terms of inference time.

6. Discussion

Now we perform further analysis and discuss variations of our methodology.

We limit the results to 5 most stable tasks (SST-2, MNLI, QNLI, QQP, STS-B).

6.1. Task-specific optimal number of layers to drop.

The variation in the amount of loss for each task with the dropping of lay-

ers in Table 2 suggests that the task-specific optimal number of layers would

result in a better balance between the size of the pruned model and the loss in

performance. In this section, we present the results of the optimal number of

layers for each task. For these experiments, we split the standard development

set into equal-sized hold-out set and dev set. We find the minimum number of

layers required to maintain 1%, 2%, and 3% performance on the dev set using
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Drop. Loss Param. Fine-tuning Inference

speedup seconds

BERT ∥ RoBERTa

0/12 0.00 ∥ 0.00 110M 1.00 -

2/12 1.33 ∥ -0.42 94M 1.24 17% ↓

4/12 2.00 ∥ 0.01 80M 1.48 33% ↓

6/12 2.91 ∥ 0.89 66M 1.94 50% ↓

XLNET

0/12 0.00 116M 1.00 -

2/12 0.54 101M 1.20 16% ↓

4/12 0.23 86M 1.49 32% ↓

6/12 1.81 71M 1.96 49% ↓

Table 3: Comparing the number of parameters (Param.), the speed up in the fine-tuning step,

and the inference time for different models. Fine-tuning speedup shows how many times the

model speeds up compared to the original network. We report inference time on the QQP

devset consisting of 40.4k instances with a batch size of 32.

our top-layer strategy and we verify that the findings generalize to the hold-out

test. Table 4 shows the optimal number of layers on dev and the corresponding

percentage of performance drop on the hold-out set (in parentheses). For most

of the cases, the optimal number of layers found using the dev set aligns well

with the hold-out set. For example, BERT QNLI with 1% loss in performance

showed that one layer can be dropped safely and this results in a loss of 0.84

points absolute compared to using the full model.

Overall, RoBERTa and XLNet showed most robustness towards the dropping

of layers while maintaining performance threshold of 1%. For example, QQP

maintained performance within 1 point even when the top 9 and 8 layers of

XLNet and RoBERTa respectively were dropped. Essentially, the model consists

of only three layers – {1, 2, 3}. On the contrary, dropping 9 layers in BERT

resulted in a loss of 3% points for the QQP task.
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SST-2 MNLI QNLI QQP STS-B

1% Loss Threshold

BERT 7(1.6) 3(1.04) 1(0.84) 6(0.75) 7(1.16)

RoBERTa 4(0.00) 4(0.20) 5(0.87) 8(0.77) 5(1.22)

XLNet 8(1.38) 5(1.22) 4(0.51) 9(0.60) 7(0.05)

2% Loss Threshold

BERT 7(1.60) 5(1.26) 3(1.68) 8(1.60) 7(1.16)

RoBERTa 4(0.00) 5(1.26) 6(1.42) 9(1.51) 6(2.31)

XLNet 8(1.38) 5(1.22) 6(1.46) 9(0.60) 8(1.22)

3% Loss Threshold

BERT 8(2.06) 6(2.42) 5(2.60) 9(2.27) 8(2.61)

RoBERTa 5(0.69) 6(2.73) 7(2.37) 10(3.21) 7(3.00)

XLNet 8(1.38) 6(1.55) 7(1.61) 9(0.60) 9(2.46)

Table 4: Number of layers dropped from the network while maintaining performance within a

pre-defined threshold. The numbers outside brackets are the optimal number of layers found

using the dev set and the numbers within brackets report the performance loss on the hold-out

set. For example in 7(1.6), 7 are the optimal number of layers that can be dropped based on

the dev set and 1.6 is the performance loss when 7 layers are dropped on the hold-out set.

6.2. Comparing Pre-trained Models

Our pruning strategies illuminate model-specific peculiarities that help us in

comparing and understanding the learning dynamics of these models. RoBERTa

and XLNet learn task-specific knowledge earlier in the network com-

pared to BERT. Figure 3 shows the average layer-wise performance of each

model. RoBERTa learns task-level information much earlier in the model (see

the steep slope of the yellow line for lower layers). Although XLNet starts similar

to BERT but in the lower-middle layers, it learns the task information relatively

faster than BERT. For both RoBERTa and XLNet, the performance matures

close to the 7th layer of the model while BERT improves with every higher layer

until the 11th layer. Since XLNet and RoBERTa mature much earlier in the

network, this suggests that top layers in these networks might be redundant for

downstream tasks and are a good candidate for dropping in exchange for a small
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Figure 3: Average layer-wise classification results.

loss in performance. This observation is in line with the results presented in

Table 2. For example, we showed that the drop of top two layers of RoBERTa

resulted in either marginal drop in performance or improvement in performance.

The difference between the learning dynamics of BERT and RoBERTa en-

courages further investigation into what caused RoBERTa to learn task-specific

knowledge earlier in the network. Is it because of the large amount of training

data used for RoBERTa or because of better pre-training procedures such as

dynamic masking, and exclusion of next sentence prediction loss? Does early

learning of task-specific knowledge as in XLNet and RoBERTa reflect towards

a better and robust pre-trained model? Answering these questions is important

for improving the design of pre-trained models and require future exploration.

6.3. Pruning the ALBERT Model

ALBERT is based on the cross-layer parameter sharing. Because of this, our

layer dropping strategies do not save any memory as opposed to using BERT and

other transformers. However, it still makes the inference faster by speeding up

the forward pass. Table 5 presents the results on five GLUE tasks. Interestingly,

dropping the top-6 layers did not result in drastic degradation of the model

performance and, in some cases, the results even improved compared to using

the baseline model. For example, in the case of SST-2, the performance of a

19



Drop SST-2 MNLI QNLI QQP STS-B

0/12 89.79 83.39 90.24 90.29 89.61

2/12 91.40 83.82 89.55 89.64 89.54

4/12 91.63 82.73 90.24 88.51 87.00

6/12 90.14 81.64 89.11 90.08 88.21

Table 5: ALBERT: task-wise performance for the top-layer dropping strategy using the official

GLUE dev-sets. Drop shows the number of layer dropped/the total layers in the model.

6-layered model is 90.14, which is 0.35 points absolute better than the baseline.

Compared to the 6-layered BERT model (Table 2), the drop in the performance

of ALBERT-6 is relatively small. We hypothesize that the parameter sharing

in the case of ALBERT make the model learn much richer representation in the

shared contextualized layers of the model, which yields a model that is robust

towards layer-dropping. These results are encouraging and show that the model

that was designed to be space-efficient can be further improved towards run-time

efficiency by simply pruning some of its layers.

6.4. Comparing against Distilled Models

We now compare the performance of our pruned models when applying the

top-layer dropping strategy to distilled and pruned models built using various so-

phisticated architectures and training procedures. In particular, we compare to

previous work [6, 25, 23] that used KD to build 6-layered distilled models. More

specifically, we present the result of the following distilled models; Vanilla-KD

– a distilled model built using the original KD method [18], BERT-PKD [21] –

patient knowledge distillation method that encourages a student model to learn

from various layers of the teacher model, and BERT-TH – a theseus compression

method that gradually distill layers of a large model. Additionally, we compare

with the pruned RoBERTa model of [28] that used layer-level dropout during

training of a pre-trained model and showed that it enables robust dropping of

layers at test time. We also compare to the greedy layer pruning method [29],
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which creates task-specific smaller-size models by dropping layers in a greedy

fashion. All these models are identical in size to our smaller models obtained by

dropping the top-6 layers in BERT and RoBERTa. We refer to them as BERT-6

and RoBERTa-6. Table 6 compares the results.8

Our pruned models (BERT-6 and RoBERTa-6) showed competi-

tive performance compared to their distilled versions built using KD.

This result is quite surprising, given that our pruned models do not require any

additional training, while building a distilled model using KD requires training

from scratch, which is a time consuming and computation expensive process.

The top layer-dropping works consistently for all model types including distilled

models and a large set of language understanding tasks. Moreover, our setup

offers the flexibility to choose different sizes of the model based on the com-

putational requirements and the specifics of a downstream task. The result of

preserving bottom layers of the model suggests selective compression applied

to pre-trained models. For example, in KD while combining information from

various layers of the large model, it is advisable to preserve the bottom layers

and distilled the top layers. Similarly, pruning methods such as weight and

attention-head pruning, and quantization can be aggressively applied to top

layers of the models while preserving the bottom layers.

Our RoBERTa-6 has comparable results to the 6-layer pruned

model trained using LayerDrop and Greedy layer pruning. Fan et al.

[28] used layer-level dropout during training of a pre-trained model and showed

that it enables robust dropping of layers at test time. Similar to us, they directly

pruned top 6-layers of their large model and fine-tuned it for specific tasks. Ta-

ble 6 (row 7 and 10) compares top-layer dropping using their model and the

original RoBERTa model. On two out of three tasks, dropping top-layers from

the original RoBERTa model outperformed training a new model using Layer-

Drop. This shows that the current models are already robust and the top-layer

8There is an exhaustive list of task-specific distilled models but we show the results for a

few for comparison.
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No. Model SST-2 MNLI QNLI QQP STS-B

1. Vanilla-KD 90.50 80.10 88.00 88.10 84.90

2. BERT-PKD 91.30 81.30 88.40 88.40 86.20

3. BERT-TH 91.80 82.10 88.80 88.80 87.80

4. GLP6 91.20 81.30 87.60 86.80 87.60

5. DistilBERT 90.37 81.78 88.98 90.40 87.14

6. BERT-6 90.25 81.13 87.63 90.35 88.45

7. Fan et al. RoBERTa-6 92.50 82.90 89.40 - -

8. GLP6 92.00 85.60 90.80 87.80 86.60

9. DistilRoBERTa 92.50 84.00 90.80 89.40 88.30

10. RoBERTa-6 91.97 84.44 90.00 90.91 88.92

Table 6: Comparing 6-layered BERT and RoBERTa models. Results of Vanilla-KD, BERT-

PKD and BERT-TH are taken from Xu et al. [30]. Fan et al. results and GLP6 are taken from

[28, 29]. BERT-6 and RoBERTa-6 represent our models achieved by pruning top 6 layers.

dropping strategy can be directly applied to the available pre-trained models.

Similarly, we found that despite optimizing the model towards a downstream

GLUE task, the greedy layer pruning (GLP6) did not show a clear advantage

over our 6-layered model. For example, compared to BERT (rows 4 and 6), our

BERT-6 model yields better or comparable performance to GLP6 on the QQP,

STS-B, MNLI and QNLI tasks, and performs worse only on the SST-2 task.

6.5. Layer-Dropping using Fine-tuned Models

Here, we question whether dropping layers from a fine-tuned model is more

effective than dropping them from a base model? To answer this, we first fine-

tune the model, drop the layers, and then fine-tune the reduced model again.

Table 7 presents the results on BERT and XLNet. We found this setup to

be comparable to dropping layers directly from the pre-trained model in most

of the cases. This shows that dropping top layers directly from a pre-trained

model does not lose any critical information which was essential for a specific

task. However, we think that pruning a fine-tuned model may lose task-specific

information because the model is optimized for the task. Dropping layers may
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Model SST-2 MNLI QNLI QQP STS-B

BERT-6 92.25 81.13 87.63 90.35 88.45

BERT-FT-6 90.02 80.85 87.24 90.34 88.16

XLNet-6 92.20 83.48 88.03 90.62 87.45

XLNet-FT-6 92.43 83.75 86.80 90.77 87.60

Table 7: Layer-dropping using task-specific models. XLNet-FT-6 first fine-tunes the pre-

trained model, removes the layers and performs fine-tuning again.

have severe effect. This is reflected in some of the results of BERT-6.

Gradual Dropping:. In another attempt to preserve the model’s performance

during the dropping process, we iteratively drop one layer after every two epochs

of the fine-tuning process. This did not yield any improvement over dropping

layers directly from the model.

7. Conclusion

We proposed strategies to drop layers in pre-trained models and analyzed the

model behavior on downstream tasks. We conducted experiments using a variety

of pre-trained models and using a diverse set of natural language understanding

tasks and showed that one can reduce the model size by up to 40%, while

maintaining up to 98% of their original performance on downstream tasks. Our

pruned models performed on par with distilled models building using knowledge

distillation. However, unlike distilled models, our approach does not require re-

training, is applicable to a large set of pre-trained models including distilled

models, and provides the flexibility to balance the trade-off between accuracy

and model size. Moreover, we made several interesting observations such as,

i) the lower layers are most critical to maintain downstream task performance,

ii) certain downstream tasks require as few as only 3 layers out of 12 layers to

maintain within 1% performance threshold, iii) networks trained using different

objective functions have different learning patterns e.g. XLNet and RoBERTa

learns task-specific information much earlier in the network compared to BERT.
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