LAra Bench

Benchmarking Arabic AI with Large Language Models

Ahmed Abdelali, Hamdy Mubarak, Shammur Absar Chowdhury, Maram Hasanain, Basel Mousi, Sabri Boughorbel, Samir Abdaljalil, Yassine ElKheir, Daniel Izham, Fahim Dalvi, Majd Hawasly, Nizi Nazar, Yousseif Elshahawy, Ahmed Ali, Nadir Durrani, Natasa Milic-Frayling, Firoj Alam fialam@hbku.edu.qa

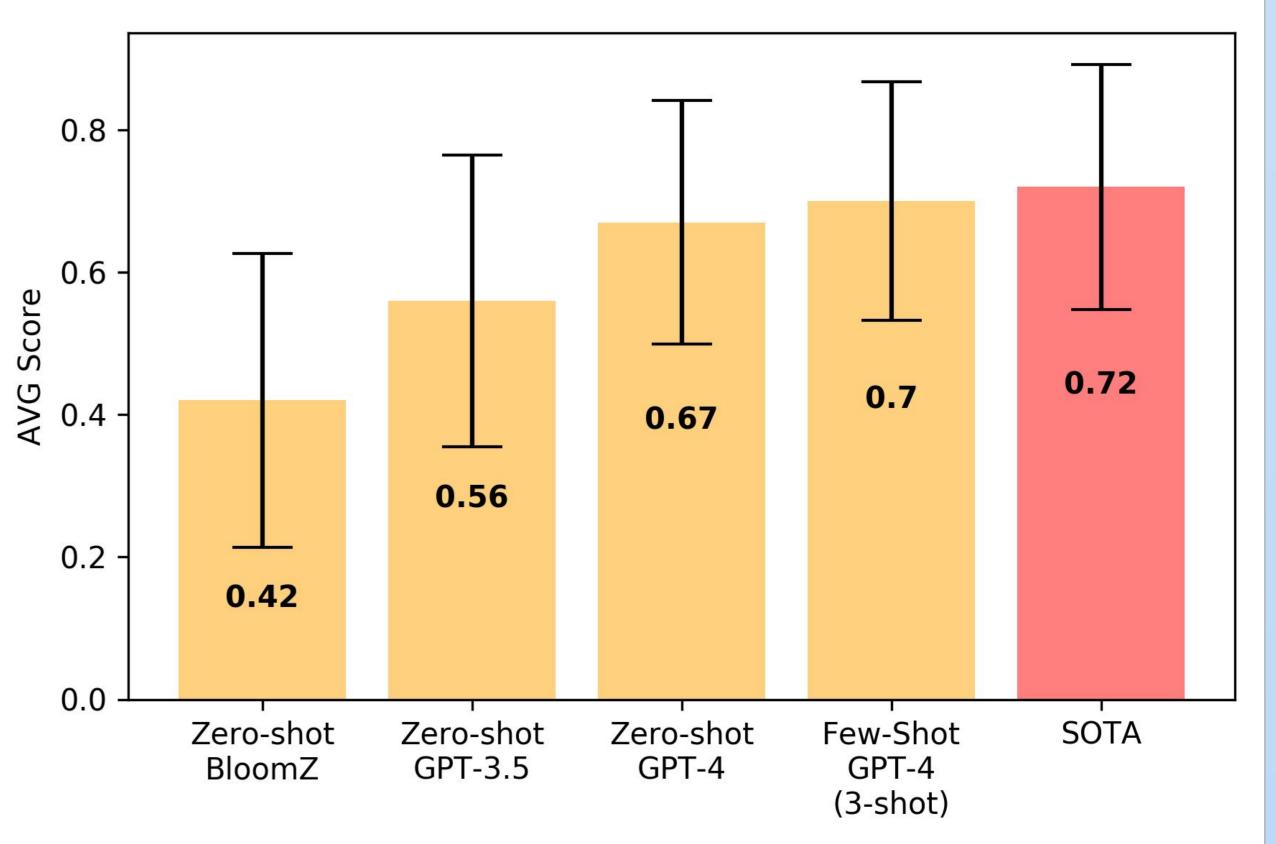
Study Design	TASKS	DATASETS	EVALUATION	MODELS
	 Word Segmentation, Syntax & Information Extraction (e.g., POS tagging) 	XNLIXGLUE	AccuracyF1	GPT-3.5
Goal: Benchmark LLMs performance on Arabia AI and compare to SOTA models.	 Factuality, Disinformation & Harmful Content Detection (e.g., Hate Speech & Propaganda Detection) 	XQuADASAD	 Macro-F1 Micro-F1 	GPT-4BLOOMZ
	Semantics (e.g. Semantic Textual Similarity and Natural	 Agmar 	 Weighted-F1 	

Modalities:

- Speech Processing: ASR, TTS
- NLP tasks: ranging from sequence tagging and content classification across different domains

Findings

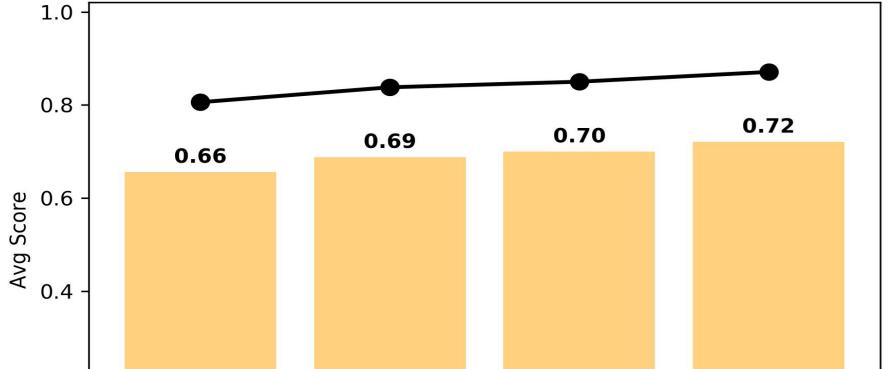
- GPT-4 outperforms other models in majority of the NLP tasks
- GPT-4 reduces performance gap with SOTA in the few-shot setting
- MSA vs Dialect: The gaps in LLMs' performance between MSA and dialectal datasets are more pronounced, indicating ineffectiveness of LLMs for under-represented dialects
- Patterns of errors in sequence tagging tasks like segmentation, POS



tagging, and NER:

- deviations in the output format
- instances where responses included extra or omitted tokens
- issues with generated output labels (Arabic instead of English)
- Models occasionally produced outputs that fell outside the predefined set of labels

Few-shot results across seven different datasets



Semantic vs. Syntactic Task Differences

- The Gap between SOTA and the three LLMs for POS (a syntactic task) is considerably larger than for MT (a semantic task)
- The gap is much lower for semantic tasks compared to syntactic tasks, on average, across the three LLMs

	BLOOMZ	GPT-3.5	GPT-4	SOTA
	Semantic			
MT	19.38	24.09	23.57	24.58
Semantics (STS, XNLI)	0.615	0.733	0.827	0.794

Speech Tasks

Performance is heavily	Dataset dom./dial.	Models	Zero-Shot	N-Shot (2hrs)	SOTA
dependent on the models' parameters	MGB2 Broadcast/MSA	W.S W.M W.Lv2 USM	46.70 33.00 26.20 15.70	36.8 - 18.8 <i>N/A</i>	O: 11.4 S:11.9
USM model performs	MGB3 Broadcast/EGY	W.S W.M W.Lv2 USM	83.20 65.90 55.60 22.10	77.5 - 44.6 <i>N/A</i>	O: 21.4 S: 26.70
comparably with SOTA for MSA	MGB5 Broadcast/MOR	W.S W.M W.Lv2 USM	135.20 116.90 89.40 51.20	114.6 - 85.5 <i>N/A</i>	O: 44.1 S:49.20
Both models show a performance	QASR.CS Broadcast/Mixed	W.S W.M W.Lv2 USM	63.60 48.90 37.90 27.80	- 31.2+ <i>N/A</i>	O: 23.4 S: 24.90
gap when dealing with dialects	DACS Broadcast /MSA-EGY	W.S W.M W.Lv2 USM	61.90 48.70 34.20 14.30	- 30.4+ <i>N/A</i>	O: 15.9 S: 21.3
Fine tuning with 2 hours	ESCWA.CS Meeting/Mixed	W.S W.M W.Lv2 USM	101.50 69.30 60.00 45.70	- 53.6+ <i>N/A</i>	O: 49.8 S:48.00
of speech improves the performance significantly	CallHome Telephony/EGY	W.S W.M W.Lv2 USM	155.90 113.70 78.70 54.20	152.9 - 64.6 <i>N/A</i>	O: 45.8 * S: 50.90

0.2 -						
0.0 0-s	hot 3-	shot	5-sho	ot	10-shot	
Task Name	Dataset	Metric	0-shot	3-shot	5-shot	10-shot
NER	ANERcorp	M-F1	0.355	0.420	0.426	0.451
Sentiment	ArSAS	M-F1	0.569	0.598	0.619	0.639
News Cat.	ASND	M-F1	0.667	0.594	0.674	0.723
Gender	Arap-Tweet	M-F1	0.868	0.980	0.931	0.937
Subjectivity	In-house	M-F1	0.677	0.745	0.740	0.771
XNLI (Ar)	XNLI	Acc	0.753	0.774	0.789	0.809
QA	ARCD	F1/EM	0.705	0.704	0.718	0.716
Average			0.656	0.688	0.700	0.721

	Syntactic			
POS	-	0.154	0.464	0.844
Parsing	-	0.239	0.504	0.796

Native Language Prompts

We observed increased performance (1%) in three out of seven datasets compared to their counterparts with English prompts

Task Name	Metric	English	Arabic
NER	Macro-F1	0.355	0.350
Sentiment	Macro-F1	0.569	0.547
News Cat.	Macro-F1	0.667	0.739
Gender	Macro-F1	0.868	0.892
Subjectivity	Macro-F1	0.677	0.725
XNLI (Arabic)	Acc	0.753	0.740
QA	F1 (exact match)	0.705	0.654
Average		0.656	0.664

Acknowledgments: The contributions of Maram Hasanain were funded by the NPRP grant 14C-0916-210015, which is provided by the Qatar National Research Fund (a member of Qatar Foundation).