
Internship Report
Fahim Imaduddin Dalvi

Meeting Translation Project

Abstract
The Meeting translation project aims to provide a platform

for multi-lingual meetings. In order for the system to work

efficiently, a robust backend is required to augment the

automatic recognition and translation services. The current

backend is a very simple proof-of-concept that supports a

single user only. The goal of this internship is to develop a

backend that will support the realtime needs of this

project.

Table of Contents

Section Page Number

Introduction 3

 Initial State 3

Objectives 4

Related Work 5

Technologies 7

Architecture 8

 Statistics Collection 10

Results 12

 Audio Processing Statistics 12

 Realtime Factor 13

 Latency 14

Future Work 16

 Known Issues 17

Other tasks 18

Conclusion 20

References 21

Fahim Imaduddin Dalvi Page 2

Introduction

The Meeting Translation project aims to make meetings involving multiple languages

more efficient. Currently, when multiple languages are involved, either human

interpreters are brought in to bridge the gap between the meeting participants, or most

of the participants do not completely understand what is going on, and hence their

participation is limited. This project will provide an online platform where participants can

create and join meetings. The platform will provide real-time speech recognition and

translation services, and hence will bridge the linguistic gap between the users in a timely

fashion.

Initial State

Before the internship, a proof of concept system was already in existence. This system

was a single-user, single-meeting system. The backend was mainly built on the Native

WebRTC Tutorial1. The tutorial was heavily dependent on a GUI component, which was

acceptable for a proof of concept system, but was not suitable for deployment on a

end-system. The rest of the backend that sent the audio for processing to the recognition

and translation servers was also user/meeting unaware.

1 http://www.webrtc.org/reference/getting-started

Fahim Imaduddin Dalvi Page 3

http://www.webrtc.org/reference/getting-started

Objectives

The main objective of this internship was to build a robust backend for the Meeting

Translation Project. The idea was to integrate a completely redesigned frontend with the

Recognition and Translations services available at the backend. The integration would

consist of the following:

1. Get the user's voice from the frontend to our servers

2. Transcribe the user's voice

3. Translate the transcriptions(into multiple languages if required)

4. Get the transcriptions/translations back to the user

The system was also to be multiplexed, so that multiple users in multiple meetings can

use the system at the same time. This is necessary for the end system, as the goal of the

project is to enable interaction between multiple users speaking multiple languages in a

meeting.

Fahim Imaduddin Dalvi Page 4

Related Work

There are a few systems that resemble part of what the Meeting translation project

aspires to do:

• Google Translate: Google translate currently supports speech translation2

between multiple languages. The main difference between this project and Google

translate is that Google translate is not built for meetings, and it does not provide

the specific functionality the the Meeting translation project will provide in order to

enhance meetings. Also, although Google translate supports speech, it does not

support continuous speech. Hence, all audio must be sent to the server before

receiving any results.

• VerbalizeIt: This mobile application pairs up the user with another human that

would act as a live interpreter and translator3. This is what currently happens in

meetings like the UN, and events where multiple languages are involved. The

Meeting translation project is very different from such services, as its employs a

completely different ideology of automating both the recognition and translation of

speech, in order to reduce the inefficiency and costs that arise from the presence

of human interpreters and translators.

• OmNovia: This platform provides an online meeting platform4, just like the

Meeting translation project. It supports multiple languages, but again, the entire

process of interpreting and translating is manual, which is a key difference

between this platform and our project. Since the meeting translation project uses

automatic speech recognition and translation, the speed at which the results are

available will be much higher. The quality might be slightly reduced, but this will

only improve as new research presents better language models and systems as

time will progress.

The above platforms/system provide a brief overview of the kinds of systems out there.

2 http://googleblog.blogspot.com/2011/01/new-look-for-google-translate-for.html
3 https://www.verbalizeit.com/
4 http://www.omnovia.com/multi-language/

Fahim Imaduddin Dalvi Page 5

http://www.omnovia.com/multi-language/
https://www.verbalizeit.com/
http://googleblog.blogspot.com/2011/01/new-look-for-google-translate-for.html

There are a lot of meeting platforms, that allow multiple people to meet and interact

online, but only a few of them support multiple languages, and even these are backed by

live human translators. Other projects provide automated translation services, but few of

them are realtime. The Meeting translation project aims to bridge the gap between these

two kinds of systems, and provide an unique platform for multi-lingual meetings.

Fahim Imaduddin Dalvi Page 6

Technologies

The following technologies were used for the project:

• WebRTC: WebRTC is a new and upcoming web standard. It is built right into

HTML5. Since HTML5 is a web standard now, it will be available in all browsers,

including on mobile devices. This allows us to instantly develop our system for

multiple platforms without worrying about device specific restrictions. Also, since

it's baked right into the browser as a standard, installation of third party plugins is

also not required. WebRTC also supports noise cancellation by default, and hence

is suited for a multi-party meeting. All of these features enhance the quality of our

system for the end users.

• NodeJs: The decision to use NodeJs for the server side processing was made due

to its robustness and ease of management. NodeJs requires minimal setup, and is

incredibly powerful thanks to JavaScript. It also has a wide contributor base, which

provides us with extensions and support that are required for our system. NodeJs

essentially replaced the C++ server in this project. This helps us leverage the ease

of use of JavaScript while still maintaining the powerful functionality of the C++

server.

• Apache: Apache is used to serve static content for the end user. It is also used to

carry out session/user management tasks.

• MySQL: MySQL is used as the database backend for the system. All the

information required by the system such as users, meetings, sessions,

transcriptions, translations etc. are stored in the database.

• Python: Python is used heavily to perform the task of generating current meeting

topics. It is also used in part of the pipeline that connects the NodeJs servers and

the Recognition/Translation servers. This pipeline is responsible for carrying all

audio data from the NodeJs servers to the recognition server, and the results from

the recognition server again use this pipeline to provide input to the translation

server.

Fahim Imaduddin Dalvi Page 7

Architecture

The architecture of the backend consists of two NodeJs servers to dynamically serve and

process clients. An apache server will serve all the clients with static content, and will also

take care of user/session management.

As far as the server side is concerned, only four elements are required from the frontend.

1. The language bar – This decides what language to user currently wants to view the

transcriptions/translations in

2. The Transcriptions/Translations view – This is where the user can view the results

3. Audio controls – These defines when the audio is being sent to the server

4. Session metadata – This is provided by apache's session management. The

bare-minimum information that is required for the servers to perform correctly is

user-id, meeting-id and language-id

On the server-side, there are two NodeJs servers running all the time.

1. NodeProcess server: This server is responsible for receiving audio from the

clients and passing it on to the recognition server, translation server, and finally

storing the results in the database. This is based on node-peerconnection5, an

open source project on GitHub that tries to implement the WebRTC bindings from

5 https://github.com/Rantanen/node-peerconnection

Fahim Imaduddin Dalvi Page 8

https://github.com/Rantanen/node-peerconnection

C++ in NodeJs. For every user, a pipeline is created by this server. This pipeline

connects the server itself to the Recognition/Translation servers. Hence, when

audio is received from the user, it is sent through this pipeline first to the

Recognition server. After receiving the results from the recognition server, they are

saved in the database, packaged again and are sent to the translation server,

results from which are again stored in the database. This module also implements

a statistics collection scheme, which stores all statistics related to recognition

(Audio length, Real time factor), translation (translation time) and the latency of the

results. These statistics are very useful for analyzing the performance of the overall

system, as well as its individual components (Actual statistics and observations can

be found in the Results section).

2. NodeServe server: This server is responsible for pushing the results stored in the

database to the connected clients. This is a more efficient method of getting the

results to the clients, instead of each client polling the database regularly. This

server also manages the state of the current meetings and the users connected to

them, in order to send only necessary information to each user.

Overview of the system architecture

Fahim Imaduddin Dalvi Page 9

Another process running on the server-side is a python module that is responsible for

generating topics from the meeting transcriptions. This module basically analyzes the

transcriptions and tries to figure out what topics are being currently talked about, and

how important each topic is. This information is then passed on the the Frontend by the

nodeServe server as they are made available by the python module.

The python module constantly checks for which meetings are in progress. For each of

these meetings, it checks if new transcriptions are available, and sends these

transcriptions to the Topic Generator. The Topic Generator has historical knowledge of all

the transcripts of the current meeting, and after collecting sufficient number of

transcriptions, it outputs and saves the important topics in the database. One Topic

Generator is run for every meeting.

Overview of the Python-Module

Statistics Collection

As mentioned earlier, the nodeProcess server has built-in capabilities for collecting

statistics. Before we understand how the statistics are collected, we need to understand

the basic concept of segments. When continuous audio is sent over to the recognition

server for processing, it is segmented into smaller chunks(based on several heuristics like

silence). Cutting the audio into smaller chunks, or segments, helps the server process the

Fahim Imaduddin Dalvi Page 10

audio in pseudo-realtime (As the server does not have to wait for the entire speech of the

user to finish). We receive the transcriptions corresponding to each of these segments,

and send each of these transcriptions for translation in the very same segments.

Now, we can determine the time each segment spent in the pipeline, and the time

the decoder spent to process each segment. Hence, for each segment, we collect the

necessary information in the following way:

We can use the decoding time (time spent for transcribing) and the audio length (time

spent waiting for sufficient length of audio) to calculate the realtime-factor of the system:

Realtime Factor=
Decoding Time
Audio Length

The latency before which the user can see the results would be the sum of the audio

length, the decoding time, and the time it takes to parse and store the recognizer results.

Fahim Imaduddin Dalvi Page 11

Results

A fully working system was created and tested against multiple users and meetings. The

complete cycle (Audio Collection Recognition Translation Topic Generation) was → → →

tested thoroughly with Arabic and English.

Complete integration (Language Selection, Transcriptions view, Translations view,

Contribution calculation, Topics view) was achieved with the frontend. The integration

also includes proper error handling. For example, the client will automatically reconnect

in case the server-side fails for an unforeseen reason. The user is also notified of the

reconnection is a subtle manner.

Audio Processing Statistics

The method for collecting statistics described in the nodeProcess section above was also

tested in the final system. For this test, the translation server was inactive, and hence only

statistics related to the recognition process were collected. The system was tested with 1

Person speaking for 1 minute. The language used was English. The number of processes

on the recognition server were 4, which allowed 4 segments to be processed

Fahim Imaduddin Dalvi Page 12

concurrently. The following results were obtained:

Realtime Factor

The decoding time (per second of audio input) here has been plotted against the start

time of each segment. Although the reasoning for the several peaks in the graph is

unclear, it could be due to the fact that not all segments were of the same complexity.

The recognizer has to maintain history and make a decision between several choices.

Since the number of choices varies from segment to segment, the peaks may represent

the segments where the number of choices was high. The average decoding time was

computed as 3.71, which is also known as the realtime factor.

Fahim Imaduddin Dalvi Page 13

Latency

A more interesting result that was obtained was of the latency. Latency is basically the

time the user has to wait after speaking before the transcriptions and translations are

available. In the above graph, the latency (per second of audio input) has been plotted

with the decoding time. As it can be seen, the latency for each segment is much higher

than the realtime factor. This can be attributed to two reasons:

1. The number of processes on the server is low (i.e it should be higher than 4)

2. When the number of segments to be processed becomes greater than four, the

segments are queued. Hence if the serving time (decoding time in this case) is

greater than the time in which a new segment is added to the queue, the backlog

for each recognition process increases, and all subsequent segments experience a

higher latency.

These findings are incredibly helpful for the person working on the recognition side to

find out where the bottleneck in the system lies. The important point here is that this kind

of statistics collection can be performed on any queue based processing system.

Fahim Imaduddin Dalvi Page 14

The quality of the results was rather poor due to the lack of training data for the

recognition and translation systems. The systems themselves perform very well. This is

evident from the fact that if the input to the system is analogous to what the system was

originally train on (Example: News data for Arabic Recognizer, TED-Style talks for

translator), the results are very promising. The accuracy is quite reasonable in these

cases, suggesting that the systems themselves are fine, only the training data was

insufficient. Hence, by collecting and analyzing these statistics, we can find which part of

the system requires the most attention and tweaking.

Fahim Imaduddin Dalvi Page 15

Future Work

The system has come a long way in these eight weeks. There are a few limitations and

known bugs (explained further below), but overall the system performs well. A lot of work

still remains in order for the system to be deemed complete. Some features that would

be augment the usefulness of the system would be:

• Continuous Audio: Currently, the system works akin to a push-to-talk system,

where each user unmute's his/her microphone when he/she wants to speak. It

would be much better if all the user has to do is speak, and the system will take

care of identifying when the user actually spoke. This is technically possible right

now, but a higher level of integration in order for the system to perform well

(better noise cancellation, crosstalk identification etc).

• Define Meeting End: Due to shortage of time, the frontend currently does not

provide a way to end a meeting. This may seem trivial, but this is extremely

important for the backend. Both the nodeServe server and the python module

keep track of meetings currently in progress. This is done in order to avoid

unnecessary computation each time a new user logs in, i.e. if a meeting is already

in progress, the transcripts are stored locally on nodeServe to avoid redundant

polling. Moreover, the topic generation takes into regard all the past results to

compute the current topics. Hence, if we prematurely end a meeting, all this past

computation will have to be recomputed.

Currently, a meeting is considered 'not-in-progress' if there are no users in the

meeting. This may not be the ideal case in the final system, as meetings can be

created before hand by users in advance, and meetings may have 'breaks' where

all users leave temporarily.

• Support any number of languages: Currently, parts of the system are centered

around the fact that there are two languages(For example, the script that sends

the transcripts for translation). It would be quite important to make this generic, as

the system may support more languages in the future.

Fahim Imaduddin Dalvi Page 16

Known Issues

There are currently two issues that are known to exist:

1. Audio tempo is modified on reception

◦ On receiving audio in the NodeProcess server, the audio is approximately

0.29 times slower than the original. The pitch of the audio is unchanged,

suggesting that this is a change in tempo. The 0.29 factor was identified by

recording audio both at the source and after it was received by the

NodeProcess server. Upon careful inspection using Audacity(an audio

manipulation tool), it was found that increasing the tempo of the audio by a

factor of 0.7122 would restore the audio to its original form.

◦ This is currently fixed by introducing 'SoX' in the audio processing pipeline.

Basically, all audio on reception is piped through SoX before being sent off

to the servers. SoX has a 'tempo' effect which increases the tempo of the

audio in real time.

2. Segmentation Fault in NodeProcess

◦ The NodeProcess server uses the C++ bindings from the NativeWebRTC

code. This code segfaults on rare occasions. The exact cause of this has not

been determined, as attempts of reproducing this usually fail. Running the

process under gdb revealed that the segfault happens in the MakeFastBuffer

function, part of node_buffer.cc.

◦ A temporary fix is to use the node-forever module, which automatically

restarts a server when it crashes, and logs all output for future examination.

This is a disruptive fix, as in the clients would suddenly notice that their

audio is not sent anymore. They can ofcourse unmute their microphone

again and communications should resume.

Fahim Imaduddin Dalvi Page 17

Other tasks

Apart from creating the backend, several other goals were achieved during the internship

period, two of which have been described below:

1. Code restructuring and organization

• The codebase was originally placed under the MT repositories, with different

parts of the system in different folders with no instructions as to what belongs

where. The codebase was successfully reorganized into a new repository,

where system modules were grouped by their position in the system. For

example, all server side code went into the 'Backend' folder, while all the

Recognition and transcription parsing code went into the 'Decoding' folder.

Documentation was created for each of these modules. Instructions were also

added for each of the server-side components regarding the per-requisites for

their setup and compilation.

2. Visualizer module for SRT-Word alignment

• A lot of Arabic data is required to train the Meeting Translation system to

recognize Arabic speech. Part of this data comes from the AMARA database,

Fahim Imaduddin Dalvi Page 18

which has videos with subtitles created by volunteers. Another member in the

team was investigating the usefulness of this data, and a roadblock that was

encountered in the process was that the subtitles were not aligned properly

with the speech(partly due to human error and lack of high-quality tools for

subtitle creation). Hence, a simple module was created that allowed a user to

see the information received from the subtitle file, speech recognizer, and a

simple segmenter (that separates speech based on silence).

• This tool helped investigating the similarities and differences in a visual form,

and this proved to be a much quicker method of identifying issues rather than

manually keeping track of the timestamps of different segments.

Fahim Imaduddin Dalvi Page 19

Conclusion

In conclusion, the Meeting translation project has grown from a proof-of-concept to a

full-blown multi-lingual, multi-user and multi-meeting system. The technologies used by

the system are emerging as standards in each of their fields, which will allow us to deploy

the system quickly and efficiently on multiple platforms in the near future, with little or no

extra effort.

A lot of knowledge was acquired in the process of building the system, especially

regarding WebRTC. Since WebRTC is quite new, the support available was limited, and

there were more problems out there than solutions regarding this technology. This posed

as a very interesting challenge, and also pushed the limits to what I personally had to do.

A lot of reading and research was involved in this process, which has better equipped me

now to deal with this new and emerging technology. It was also very satisfying and

rewarding to see the complete system actually work all the way from speaking to

translation.

Another important technologies that was involved in the project was MySQL. MySQL is

used in a lot of major systems, and it was very interesting to learn the tidbits and little

things involved in managing such databases. The most important lesson learned in this

case was that before the database is even created, it is important to layout the entire

schema on paper first, as this helps avoid a lot of redundancy and enhances the overall

structure of the database. All in all, this was a very fruitful period with a lot of knowledge

involved.

Fahim Imaduddin Dalvi Page 20

References

• A new look for Google Translate. (n.d.).Google Blog. Retrieved July 29, 2013, from

http://googleblog.blogspot.com/2011/01/new-look-for-google-translate-for.html

• Getting started - WebRTC. (n.d.).WebRTC. Retrieved July 29, 2013, from

http://www.webrtc.org/reference/getting-started

• Introduction. (n.d.). VerbalizeIt. Retrieved July 29, 2013, from

https://www.verbalizeit.com/

• Multi Language. (n.d.). omNovia Interactive Webinar and HD Webcasting Platform –

Online Training – Marketing – Live Event Webcasting. Retrieved July 29, 2013, from

http://www.omnovia.com/multi-language/

• Rantanen, M. (n.d.). Node-Peerconnection. GitHub. Retrieved July 29, 2013, from

https://github.com/Rantanen/node-peerconnection

• WebRTC-Overview. (n.d.). WebRTC. Retrieved July 29, 2013, from

http://www.webrtc.org/

• WebRTC 1.0: Real-time Communication Between Browsers. (n.d.). W3C Public CVS

Repository. Retrieved July 29, 2013, from

http://dev.w3.org/2011/webrtc/editor/webrtc.html

Fahim Imaduddin Dalvi Page 21

http://dev.w3.org/2011/webrtc/editor/webrtc.html
http://www.webrtc.org/
https://github.com/Rantanen/node-peerconnection
http://www.omnovia.com/multi-language/
https://www.verbalizeit.com/
http://www.webrtc.org/reference/getting-started
http://googleblog.blogspot.com/2011/01/new-look-for-google-translate-for.html

