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1 Introduction

People often capture several photos of the same scene to produce the best image. Manually choosing the
best image out of the candidates is a time consuming process. We propose an algorithm to automatically
detect the optimal image out of a set of candidate images. This eliminates the need for people to spend
time evaluating the quality of their images, and allows them to focus on enjoying the memories they have
experienced.

Figure 1: Poorly-lit Figure 2: Well lit and focused Figure 3: Poorly-focused and
blurred

2 Previous work

2.1 Review of previous work

Past work has focused on optimizing small subsets of the features and techniques tested in Violet. Apple
has built a similar but simpler optimal image classifier for IOS 8, that classifies based on facial features and
blur detection. Unfortunately, they have not released the actual algorithms behind their classification. From
our limited testing, it generally avoids blurred images, but does not always pick the clearest image. Other
papers that we have come across concentrate on specific features in an image. For example, researchers in
Ireland published a paper on detecting image orientation in 2006[8] with the goal of quickly detecting slanted
images. Another paper by Mai et al. uses the concept of detecting the rule of thirds in photos[10]. There has
also been work done on finding the most representative image from a set of images by Chu and Lin[3]. We
also found several papers that aim to detect reflection and colorfulness of images, albeit not for finding the
best image in a set. Finally, a paper by Li, Loui and Chen of a very similar goal as ours describes algorithms
to get an aesthetic score for an image[9]. The algorithm they describe heavily focuses on faces in images.
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We did not find any published research that has combined multiple such features to classify images.
Violet seeks to accomplish this by combining many of the above algorithms and others to get a holistic score
for each image.

2.2 Key contributions of project

Violet contributes feature selection research and annotated data to the automatic image rating community.
Regarding feature selection research, Violet demonstrates a case where combining 8 most commonly used

features to determine image quality successfully predicts the best image from a set of images. These 8 features
include blurriness, brightness, vibrancy, reflection, colorfulness, fraction of eyes closed, facial blur, and
image composition. Each of these features has been the subject of extensive research for feature extraction
techniques, and Violet uses and builds on top of them, producing novel feature extraction techniques and
results.

As examples, Violet uses OpenCV to detect faces and eyes, but combines that with existing blurred image
research to produce a facial blur score for each image. The study of image composition has been largely
subjective until recently, and Violet seeks to score conformance with the Rule of Thirds with a novel image
composition feature extraction technique. Violet also presents a new algorithm to detect closed eyes in very
low resolution images.

Regarding data tagging, in the process of completing the project we tagged 5000 images as good or bad.
These images contain various scenes and setups including lakesides, people, camping, weddings, cars, flowers,
and other miscellaneous images. These positive and negative tags can be used as-is by future researchers
seeking to determine quantification of image quality. To simulate good and bad images of the same scenes,
we have written algorithms that modify image blurriness, brightness, and vibrancy and generate ’bad’ photos
from a ’good’ photo.

3 Technical solution

3.1 Summary

This project is divided into 3 components:

1. Data collection and labeling

2. Feature selection and extraction

3. Machine learning algorithm selection and implementation

Data labeling and feature extraction took the majority of the time for this project. To speed up the
process, we built a web application for easy classification of images as ’good’ or ’bad’. The application
automatically saved each annotation in a convenient format that could be used to provide class labels for
each image.

To avoid overfitting on specific scenes, we decided to tackle the more general problem of giving an image
a score, and then applying the results to our specific case of consumer photos of the same scene. Hence, our
dataset comprises many images each from different scenes. To generate test data to evaluate image selection
from images of the same scene, we wrote an algorithm to randomly adjust blur, brightness, and exposure of
an image to generate bad images.

Feature extraction required extensive research to find appropriate methods to extract the features most
relevant in determining image quality. The initial implementation of Violet (baseline) utilized 2 features
exclusively: blurriness and brightness. The baseline suffered from over-generalization of images, and resulted
in linearly inseparable data. The final implementation of Violet expanded on this to include 8 features, each
of which accurately discriminated between good and bad images based on their metric.

3.2 Datasets

After searching through several vision dataset indexes, we decided to use the CERTH Blurred Images

Dataset[2], as it was the most appropriate dataset for the purposes of our project. This dataset contains
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about 1000 undistorted images, and 1200 blurred images. This set is helpful because blurriness is one of the
strongest contributing factors to bad photographs. Although we could classify the blurred images as bad
photos quickly, this was not the same for the undistorted images. We had to manually tag them as good or
bad. A positive outcome of this manual tagging process was that we were able to use this dataset to test
how light-levels affect classification of images.

After getting some initial results from the CERTH dataset, it proved to be insufficient for our needs.
This was because it had a larger number of ’bad’ photographs, and hence our model was performing poorly
on the ’good’ photograph class. Moreover, the CERTH dataset did not fully represent our use case, which
was targeting consumer photos. Hence, we decided to augment our dataset with images downloaded from
ImageNet[7], an online database maintained by the Stanford Vision Lab. We downloaded 4000 images
from ImageNet to diversify and normalize our dataset. Some of the categories we used included camping,
weddings, cars and people. As was the case with the CERTH dataset, not all of these images were ’good’
photographs, and hence we had to manually annotate these.

Some other datasets that we did not use were Indoor Scenes with Various Lighting Conditions

1[11] and Indoor Scenes with Various Lighting Conditions 2[4]. The former contains images of several
indoor scenes at varying illumination, but the image subjects and backgrounds were too artificial. The latter
contained images whose lighting conditions were more artificial than those in the types of images we wished
to evaluate.

3.3 Feature Extraction

3.3.1 Brightness

The first feature we extracted was brightness, as it is one of the most basic factors in determining the
quality of a photograph. To achieve a qualitative measure of brightness, we used relative luminance, as
it incorporates information such as what colors the human eye perceives more sharply. For each pixel, we
compute the luminance as:

luminance = 0.2126×R+ 0.7152×G+ 0.0722×B,

where R, G and B denote the red, green and blue components of the pixel respectively. We then compute
the average luminance over all the pixels in the image.

As expected, relative luminance cannot be linearly separated into ’good’ and ’bad’ photograph classes,
as ’bad’ photographs can either be too dark or too bright. After looking at the data we had, we found
the average luminance for ’good’ photographs, and then considered the absolute distance from this average
luminance as our score for brightness. Hence, ’good’ photographs would therefore have a much smaller score,
while both dark and overly bright images would have a higher score.

3.3.2 Blurriness

The next feature we tackled was blurriness. We studied several approaches such as Haar wavelet transforms
or measuring the width of edges in an image. In the end, we used the approach used proposed by Su,
Lu and Tan[13]. The premise of the algorithm is that blurred images have a lot more information about
coarse-grained details in an image, while focused images also store information about fine-grained details.
The algorithm also uses the fact that when we decompose an image using SVD, the first few singular values
incorporate information about the coarse-grained details, while the last few singular values incorporate
information about the fine-grained details. Therefore, we consider the ratio

β =

∑t

i=0
λi

∑n

i=0
λi

,

where n is the total number of singular values and t is how many singular values we want to consider.

We choose t to be 1

6

th
of n. Hence, β will be higher for blurred images, since fine-grained details are missing

in a blurred image, the last few singular values will encode less information and be much smaller. One of
the biggest advantages of this approach over other ones is that we can detect both focus and motion blur
using the singular values.
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3.3.3 Reflection

After analyzing several ’bad’ images in our dataset, we noticed one common theme was reflections. One
common example of this is when photographs are taken from behind a semi-reflective surface, such as window
panes. An instance of this can be seen in figures 4 and 5. We decided to implement the algorithm proposed by
Ahmed, Pitie and Kokaram[1]. They use the concept of Color Channel Independence to determine the level
of reflectance in an image. Fundamentally, they try to separate the individual color channels into multiple
layers, and the degree to which they can successfully do this is their score for reflectance. A qualitative
measure of this degree of separation is termed as Generalized Normalized Grayscale Correlation, or GNGC.
Specifically, GNGC can be computed by[12]:

GNGC(f, g) =

∑N

i=1
C2

i (f, g)
∑N

i=1
Vi(f) · Vi(g)

,

where C is the covariance and V is the variance of the respective inputs. As Ahmed, Pitie and Kokaram
suggest, we use the Red and Blue channels of an image as inputs the the GNGC function. The higher the
value of GNGC, the lower the reflectance in an image.

Figure 4: Example with no
reflection

Figure 5: Example with reflection

3.3.4 Vibrancy

Vibrancy of an image was the next factor we used as a feature. This feature was inspired by the histogram
equalization technique generally used to sharpen and increase the contrast in an image. In simple terms, the
less vibrant an image, the more faded out it looks. To get a qualitative measure for this feature, we decided
to use the entropy of the luminance histogram of an image. Generally, images that are faded out tend to
have a peak at certain values of luminance, rather than distributed values for luminance. Figure 6 shows
examples of vibrant and faded images.

3.3.5 Saturation

Professional photographers always suggest using the HSV colorspace instead of the RGB space, as the
channels defined by HSV better separate the various components of an image. Namely, Hue defines the
color of a pixel, Saturation defines the ”amount” of color, and V defines the lightness of the pixel. We
analyzed several features and their combinations like entropy of saturation, average saturation, functions of
saturation and lightness combined etc. After our analysis, we did not find any of these particularly helpful
in distinguishing between the classes. This feature did not provide any significant information that was
different from other features, and hence we opted to not use this as a feature to simplify the system.

3.3.6 Colorfulness

Although the previous feature was not very distinguishing, we still wanted to use the idea of the amount of
color in an image as a feature. We implemented the colorfulness metric defined by Haslera and Süsstrunk in
their 2003 paper[6]. The metric is defined as follows:
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Figure 6: The top row shows a vibrant image along with its luminance
histogram, while the bottom row is a less vibrant image

C =
√

σ2
rg + σ2

yb + 0.3
√

µ2
rg + µ2

yb,

where rg is defined as the difference between the red and the green channels, and yb is defined as the
difference between the yellow and the blue channel. The yellow channel is obtained by averaging the red and
green values for each pixel.

3.3.7 Facial blur

A major component of consumer photos today is faces, and we found it imperative to make use of facial
features in our algorithm. We first use the famous algorithm proposed by Viola-Jones[14] to detect faces in
an image. We used an OpenCV implementation to accomplish this. We then apply the blurriness detection
on each face, and use the average blurriness for all faces in an image to get a quantitative score for this
feature.

3.3.8 Fraction of closed eyes

Using face detection from the previous feature, we then use Haar Cascades to detect eyes in the image. We
use a pre-trained model provided by OpenCV to accomplish the eye detection. The aim of this feature was
to detect the fraction of eyes that are closed in the image, as photos with open eyes are generally better
than photos with closed eyes. Closed eyes are a common occurence when taking group photographs. We
studied several algorithms to detect closed eyes such as using HoG features and running a machine learning
algorithm to learn the weights. We also analyzed algorithms that used Circular Hough Transforms to detect
the iris in the image. Unfortunately, since faces are not usually a large part of pictures, the resolution of
eyes was typically low, and the above algorithms did not perform very well. Inspired by several techniques
seen in class and other features, we implemented the following algorithm to detect closed eyes in an image:

1. Scale the eye patch to 200x200 pixels. We lose some clarity because of the blurriness, but this helps
us achieve better numbers for the steps that follow

2. Perform histogram equalization on the eye patch. This helps us normalize the effects of eyes detected
from really bright or dark images

3. Threshold the image such that all pixel values below 50 are dark, and all above are bright. This helps
us offset the effects of the lost information from the up scaling of the eye patches
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4. Compute the sum of intensities column-wise for the eye patch. Therefore, at the end of this step,
we will have a 200 element vector, where the ith element represents the sum of intensities of the ith
column in the eye patch

5. Fit a 2nd degree polynomial to the curve obtained from the intensity vector previous step. The intuition
behind this step is that if an eye is open, the intensity would increase on either side of the iris (since
the iris itself is dark, with surround white areas). On the other hand, for a closed eye, we would not
see such peaks.

6. Compute the error between the intensity curve and the fitted polynomial from the previous step.
Threshold the error such that values below the threshold indicate a closed eye.

Figure 7: The top row shows the images at different steps of the process.
As we can see, the histogram for the closed eye is much flatter than the

histogram for the open eye

3.3.9 Image composition

Taking inspiration from a paper by Mai et al.[10], we decided to implement a simpler algorithm to detect
the composition of an image due to time constraints. The rule of thirds states that the subject of an image
should lie on the grid lines created by dividing an image into thirds vertically and horizontally. Figure 8
shows an example of a photograph obeying the rule of thirds.

To get a qualitative measure of the adherence to the rule of thirds, we first scale all the images to a
constant size. We then run an edge detector on the image, and count the intensities of the pixels on the
edge map around the grid lines. The sum of these intensities is our qualitative measure of adherence to the
rule of thirds.

3.4 Algorithms and Machine Learning

3.4.1 Baseline

To serve as a simple baseline, we first used our brightness and blurriness features. We manually set thresholds
to classify the good images from the bad ones by analyzing a subset of the dataset.

3.4.2 Näıve Bayes

We implemented an initial machine learning algorithm with Näıve Bayes, assuming all features were indepen-
dent of one another. This assumption is not true, as shown by the dependence of blurriness and exposure in
Figure 9, obtained from empirical results during our testing. The use of machine learning is further justified
by the fact that it is difficult to manually tune the classification thresholds due to the dependencies between
features.

6



Figure 8: Rule of thirds example

Figure 9: Blurriness vs Exposure

3.4.3 SVM

We moved on to a more complex model by using Support Vector Machines to attain better classification
results. We tried several linear and non-linear kernels. After performing a grid-search over various kernels
and parameters, we decided to use a linear kernel, as it consistently gave us the best classification accuracy.
We faced several issues in this phase of the project. After analyzing the feature space (explained further
in experiments section), we realized that our algorithm was not doing very well because our feature space
was very clustered, with large overlaps between the classes. We also noticed that some of our features were
not linearly separable, and hence the linear kernel was not attaining the highest possible accuracy. Keeping
these findings in mind, we started to tune our features and dataset to alleviate these problems.

We first fixed our features so that they were linearly separable. We did this by considering the absolute
distance of each feature value to the average good value for that feature. To fix the problems with our data,
we significantly expanded our dataset to include images from many more scenes. We specifically made sure
that we had images containing faces, reflections and varying levels of color and exposure. We also made sure
that the number of examples of each class where roughly the same.

With this, our performance got a significant boost. We continued tuning our parameters to achieve better
separating hyper-planes and avoid overfitting.
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3.4.4 Logistic Regression

We were still not obtaining the best results, and hence decided to try different classifiers. We noticed that
we still had problems with noise: Many ’good’ photos would sometimes have feature scores inclining towards
the bad class. Since SVM generates a separating hyperplane based on the data points closest to the margin
rather than the entire dataset, SVM can be prone to noise when the support vectors are noisy. We posited
this occurs in our case, and found that logistic regression performed better. Switching to logistic regression
with the same features gave us a small boost of about 1%.

4 Experiments

We performed several experiments varying both the machine learning algorithms and our features. The
results from our baseline and logistic regression (the final machine learning algorithm we chose) are described
in Tables 1, 2 and 3.

Bad Images Good Images
Precision 0.53465 0.62561
Recall 0.80507 0.31733
F1 0.64257 0.42108

Table 1: Baseline Results

Bad Images Good Images
Precision 0.66335 0.63453
Recall 0.59917 0.69592
F1 0.62963 0.66381

Table 2: Training Error

Bad Images Good Images
Precision 0.69007 0.63906
Recall 0.64480 0.68470
F1 0.66667 0.66109

Table 3: Test Error

As we can see, the machine learning algorithm performs much better, especially on the ’good’ class. Our
linear SVM implementation boosted our scores by about 2% above Näıve Bayes, and the Logistic regression
implementation gave us an additional 1% boost on testing accuracy for both classes. We also tried a quadratic
kernel and the RBF kernel as they are non-linear, but neither fit well to our data. We also tried several
methods to avoid over-fitting such as setting higher regularization costs and performing early stopping during
training. Early stopping was very helpful initially when our dataset was not balanced, but after we expanded
our dataset, it did not have much of an effect.

As for feature selection, we assessed each feature individually on a sample set of images, as well as look
at the structure of the feature space described by each feature individually and in combination with other
features. Figure 10 shows the feature space for three features combined: brightness, blurriness and facial
features. As we can see, there is a nice distinction between the green (’good’ samples) and red (’bad’ samples)
areas. As mentioned earlier, we decided to not use the saturation feature, as it did not separate well in the
feature space.

Analyzing our feature space also helped us resolve several issues we faced early on with poor machine
learning performance. We noted from the feature spaces that our features were not very discriminating,
and that guided us to improve the existing features and add new ones based on analysis of ’good’ and ’bad’
photos. We also learned a lot of insight on the data by looking at the feature spaces. For example, we initially
noted that our facial feature did not have much of an impact on the feature space, and rightly concluded
that our data simply didn’t have many faces. This helped us expand our dataset in the right manner.

For our implementation of closed eye detection, we decided to qualitatively test it on an existing dataset.
The Closed Eyes in the Wild (CEW) [5] dataset gives us about 5000 annotated eye patches with both
closed and open eyes. On this dataset, our algorithm has 75% accuracy. Although a higher accuracy would
be better, this suffices for the purposes of comparing photos of the same scenes with the same faces. The
detailed results are outlined in 4
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Figure 10: Feature space

Open Eyes Closed Eyes
Precision 0.75040 0.74682
Recall 0.75711 0.73993
F1 0.75374 0.74336

Table 4: Accuracy on the CEW dataset

We started out with the goal of accurately selecting the optimal photo in a set of consumer photos from
the same scene. During the course of the project, we focused on the general problem of giving an image
a score, immaterial of the scene it originated from. Hence, we decided that to really gauge the success of
our algorithms, we must test it on the original problem. Therefore, we choose 200 images from different
scenes, and synthetically generated bad photos for each scene. We applied a random amount of exposure
(in both directions), motion blur and focus blur to generate the bad photos. Hence, at the end of this step,
we had 200 sets of photographs, where each set had 5 photographs with various amounts of blurriness and
brightness. We used our classifier to rank the images in each set. Our algorithm classified the actual best
image in each set as either rank 1 or 2 with 99.5% accuracy. Also, with an accuracy of 89.5%, the algorithm
gave the highest ranking to the actual best image.

5 Future Work

Our eventual goal is to enable a user to provide as input an entire album of photographs, and receive as
output the best image from each scene. To do this, we will need to identify which images are part of the
same scene in the album. We can use one of the various features we have learned in class for matching, like
SIFT or HOG’s to complete this task. We would also like to incorporate more tips from photography experts
from around the world, like checking for symmetry and centering a photograph on the subject’s dominant
eye.

Finally, we would also like to have a web application where consumers can upload albums and we choose
the best image from each scene for them. We also envision adding feedback capabilities to the app, so that
our algorithms can improve over time as a greater number of people use it.
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6 Conclusion

In conclusion, we achieved all what we had sought to achieve except the web application. Although we had
some time at the end of the project to work on the web application, we decided to instead improve our
features and perform more analysis on the algorithms. We achieved reasonable results given our goals, and
we hope to continue work on this project and make the research available soon.
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