

15-213 Recitation 10

Introduction to Computer
Systems

Fahim Dalvi
7 November, 2013

Malloc Lab

● Due 20th November, 2013
● Submit on autolab constantly!

Only 318
hours left!!!!

The Idea

● Create a general-purpose allocator that dynamically
modifies the size of the heap as required.

● The driver calls your function on various trace files to
simulate placing data in memory.

● Grade is based on:
– Space utilization (minimizing fragmentation)
– Throughput (processing requests quickly!)
– Your heap checker
– Style

You will implement:

● mm_init: initializes the heap
● malloc: returns a pointer to an allocated block
● calloc: same as malloc, but zeroes the memory first
● realloc: changes the size of a previously allocated

 block
● free: frees previously allocated memory
● mm_checkheap: debugging function Something that →

 will save your life

You can use:

● mem_sbrk

– Used for expanding heap size
– Allows you to dynamically change the heap size

● mem_heap_lo: Pointer to first byte of heap
● mem_heap_hi: Pointer to last byte of heap
● mem_heapsize

● mem_pagesize

Design

● You have a ton of decisions to make!
● Think about fragmentation
● Spend time thinking about each and every decision you

make
● You have to decide on:

– How will you manage free blocks Implicit, Explicit or →
segregated

– Policy for finding free blocks First fit, Next fit, Best →
fit

– Coalescing Immediate, Lazy, etc...→
– And a lot more.....

Design

Think about each and
every decision you make!

What happens if you use immediate
coalescing with explicit lists?

Are implicit lists good enough?

Fragmentation

● Fragmentation affects the space utilization part of
your grade

● Internal fragmentation
– Results from the fact that payload's may be smaller

than the block size itself
● Header and Footer
● Padding
● Alignment

– Quite unavoidable!

Fragmentation

● External fragmentation
– Occurs when there is enough aggregate heap

memory, but no free block is large enough
– Some policies are better at minimizing this, you'll

have to figure out what is your best option

Managing free blocks

● This affects that performance part of your grade
● Implicit list

– Uses block lengths to “find” the
next block

– Connects all blocks
– Takes some extra space (for the

“header”)
– Optional “footer” may take some

more space

Managing free blocks

● Explicit list
– A list of free blocks
– Use the “payload” part

of the free block
– Why is this better than

implicit lists?

Managing free blocks

● Segregated list
– “size” classes
– Very easy to find the “appropriate” free block

Finding free blocks

● First fit
– Start from the beginning everytime
– Find the first free block

● Next fit
– Continue searching where last search ended
– Is atmost as slow as first fit, but generally better

● Best fit
– Choose a block such that it minimizes fragmentation
– Great for space utilization, bad for performance (Why?)

● What if you don't find a free block thats big enough?
– Extend the heap

But what about new free blocks..?

● Do you insert in it the beginning of each list? End of
each list?
– Really fast, but may result in slower “free block

finding”
● Do you insert it in the “logical” place?

– Slower, but research shows this may decrease
fragmentation

Coalescing policy

● Implicit lists
– Write new size in the header of first block & footer of

last block
● Explicit lists

– You have to add this to your “free” list
● Segregated lists

– Like explicit, but you must insert it in the right “size”
class

Debugging

● The idea behind malloc is quite simple
● On the other hand, the debugging is very hard

Debugging

● The idea behind malloc is quite simple
● On the other hand, the debugging is very hard
● mm_checkheap would be your best friend!

– Most problems arise from the fact that your
“headers or footers” are not properly maintained

– Will help you solve “simple” problems and avoid
unnecessary hypertension

mm_checkheap

● Don't worry about efficiency here, this function is not
tested for performance

● Make sure you concentrate on correctness
● Check for things like:

– Consistency of pointers
– Consistency of headers/footers
– Address alignment
– Whether free blocks are coalesced when they are

supposed to
● The more checks the merrier!

Suggested plan

● Implement the basic “implicit” list first
● Get to 60% performance, don't worry about being

smart
● ONCE you have this safe, think about better

implementations and ideas

Some helpful stuf

● Pointer casting can be tricky

int *ptr = 0x10203040

char *ptr2 = (char *)ptr + 2 ? →

char *ptr3 = (char *) (ptr + 2) ?→

Some helpful stuf

● Macros
– #define some-text replace-text

– These are “faster” than functions
– Basically search-and-replace before the compiler

starts compiling
– Hopefully you have used these before like:

#define MAGIC_NUMBER 513

Some helpful stuf

● Macros
– But there are more powerful, can act like

“functions”
– #define ADD2(x) (x+2)

– #define SUM(x,y) (x+y)

– Use parenthesis all the time!
● #define MULT1(x) 2*x
● #define MULT2(x) 2*(x)
● What happens if x=5+1

Some helpful stuf

● Inline functions
– Real functions, but still faster than normal

functions
– Compiler replaces each call with the actual “code”

● Avoids overhead of stack setup
– Useful for small functions

inline int max(int a, int b) {
return (a > b ? a : b);

}

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

