15-213 Recitation 10

Introduction to Computer

Systems

Fahim Dalvi
/ November, 2013




Malloc Lab

e Due 20% November, 2013

e Submit on autolab constantly!

ONLY 318
HOURS LEFT!!!




The Idea

Create a general-purpose allocator that dynamically
modifies the size of the heap as required.

The driver calls your function on various trace files to
simulate placing data in memory.

Grade is based on:

Space utilization (minimizing fragmentation)

Throughput (processing requests quickly!)

Your heap checker
Style




You will implement:

mm_init: initializes the heap
malloc: returns a pointer to an allocated block
calloc: same as malloc, but zeroes the memory first

realloc: changes the size of a previously allocated
block

free: frees previously allocated memory

mm_checkheap: debugging function - Something that
will save your life




You can use:

mem_sbrk

- Used for expanding heap size
- Allows you to dynamically change the heap size

mem_heap_lo: Pointer to first byte of heap

mem_heap_hi: Pointer to last byte of heap
mem_heapsize

mem_pagesize




You have a ton of decisions to make!
Think about fragmentation

Spend time thinking about each and every decision you
make

You have to decide on:

- How will you manage free blocks — Implicit, Explicit or
segregated

— Policy for finding free blocks — First fit, Next fit, Best
fit

- Coalescing — Immediate, Lazy, etc...

- And a lot more




THINK ABOUT EACH AND
EVERY DECISION YOU MAKE!

What happens if you use immediate
coalescing with explicit lists?

Are implicit lists good enough?




Fragmentation

« Fragmentation affects the space utilization part of
your grade

e Internal fragmentation

- Results from the fact that payload's may be smaller
than the block size itself

« Header and Footer
e Padding
e Alignment

— Quite unavoidable!




Fragmentation

« External fragmentation

— Occurs when there is enough aggregate heap
memory, but no free block is large enough

- Some policies are better at minimizing this, you'll
have to figure out what is your best option




Managing free blocks

e This affects that performance part of your grade
* Implicit list 1 word

Uses block lengths to “find”’ the —
next block

Size

Connects all blocks
Payload
Takes some extra space (for the
‘““header?’)

Optional “footer”” may take some

Optional
padding

Format of allocated

more space and free blocks




Managing free blocks

» Explicit list
— A list of free blocks

- Use the “payload”” part
of the free block

- Why is this better than
implicit lists?

Payload and
padding

Size a

Allocated blocks

Free blocks




Managing free blocks

» Segregated list
— ““size” classes
- Very easy to find the “appropriate”” free block




Finding free blocks

First fit

- Start from the beginning everytime

- Find the first free block

Next fit

- Continue searching where last search ended

- Is atmost as slow as first fit, but generally better

Best fit

— Choose a block such that it minimizes fragmentation

- Great for space utilization, bad for performance (Why?)
What if you don't find a free block thats big enough?

- Extend the heap




But what about new free blocks..?

Do you insert in it the beginning of each list? End of
each list?

- Really fast, but may result in slower “free block
finding?”’

Do you insert it in the “logical®” place?

— Slower, but research shows this may decrease
fragmentation




Coalescing policy

Case 1 Case 2 Case 3

Allocated Allocated Free

Block being
freed

Allocated Free Allocated

o Implicit lists

— Write new size in the header of first block & footer of
last block

» Explicit lists
- You have to add this to your “free” list

» Segregated lists

- Like explicit, but you must insert it in the right “size”
class




Debugging

 The idea behind malloc is quite simple

* On the other hand, the debugging is very hard

Ties 8=¥ __"._"",.;Th TR
paRege




Debugging

 The idea behind malloc is quite simple
* On the other hand, the debugging is very hard
 mm_checkheap would be your best friend!

- Most problems arise from the fact that your
““headers or footers” are not properly maintained

- Will help you solve “simple”” problems and avoid
unnecessary hypertension




mm-checkheap

Don't worry about efficiency here, this function is not
tested for performance

Make sure you concentrate on correctness
Check for things like:

Consistency of pointers
Consistency of headers/footers
Address alignment

Whether free blocks are coalesced when they are
supposed to

The more checks the merrier!




Suggested plan

Implement the basic “implicit?’ list first

Get to 60% performance, don't worry about being
smart

ONCE you have this safe, think about better
implementations and ideas




Some helpful stuff

* Pointer casting can be tricky

int *ptr 0x10203040
char *ptr2 (char *)ptr + 2 » ?

char *ptr3 (char *) (ptr + 2) » ?




Some helpful stuff

e Macros

— #tdefine some-text replace-text
— These are ““faster’” than functions

- Basically search-and-replace before the compiler
starts compiling

- Hopefully you have used these before like:
#define MAGIC_NUMBER 513




Some helpful stuff

e Macros

But there are more powerful, can act like
“functions”’

#define ADD2(x) (x+2)
#tdefine SUM(x,y) (x+y)

Use parenthesis all the time!
e #define MULT1(x) 2*x

e #fdefine MULT2(x) 2*(x)

« What happens if x=5+1




Some helpful stuff

 Inline functions

- Real functions, but still faster than normal
functions

- Compiler replaces each call with the actual “code”’

» Avoids overhead of stack setup
— Useful for small functions

inline int max(int a, int b) {
return (a >b ? a : b);

}




Any Questions?




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

