

15-213 Recitation 11

Introduction to Computer
Systems

Fahim Dalvi
14 November, 2013

Malloc Lab

● Due 20th November, 2013
● Submit on autolab constantly!
● Time is running out very soon

Exam

● 20th November, 2013
● The exam covers from Caches to Dynamic memory

allocation, inclusive.
● Exam is on the same day as malloc lab

– Hopefully you have a few late days

Some helpful tools

● What should you do when you get errors?
– The driver will try to help you, with messages like:

● payload address not aligned to 8 bytes
● block i has 2 garbled bytes
● out of memory

– Garbled bytes It means that you have overwritten →
something my mistake, like the header of the next
block or so

– But sometimes,
● Segmentation faults You know these well, use →
gdb

Some helpful tools

● gdb

– break expr

– watch expr

● eg. watch *0x11223344
● Breaks program execution when 0x11223344 is
modified

– rwatch expr

● Same as watch, but breaks even if the location is
read

– awatch expr

● Breaks if the location is read or modified

Heap corruption

● Again, this is key to avoid many, many problems
● A lot of the time, your heap is corrupted.

– How can you check what's going wrong in the
heap?

● Print the entire heap
● But this is going to get very tiring, very soon
● The amount of data you have to parse through
is very high

Heap corruption

● Again, this is key to avoid many, many problems
● A lot of the time, your heap is corrupted.

– How can you check what's going wrong in the
heap?

● mm_checkheap
● Call it every time before you modify the heap
● Your program might actually seg fault much
after your corrupted your heap, hence its
important that you check for the correctness of
the heap at every step

mm_checkheap

● Block level:
– Header and footer match
– Payload data is aligned

● List level:
– Next/prev pointers in consecutive free blocks are consistent
– Free list contains no allocated blocks
– All free blocks are in the free list
– No contiguous free blocks in memory (unless you defer

coalescing)
– There are no cycles in the list
– Segregated lists contain only blocks that are of the correct size

class

mm_checkheap

● Heap level:
– Check if your prologue and epilogue blocks are

correctly implemented
– All allocated/free blocks should be between these at

any point of time
● Any more suggestions?

Any Questions?

Lets refresh your caches!

http://www.qatar.cmu.edu/~kharras/courses/15213-f13/oldexams/exam2-f03.pdf
Question 3

http://www.qatar.cmu.edu/~kharras/courses/15213-f13/oldexams/exam2-f03.pdf

Lets refresh your caches!

● 16 kB cache
● 16 bytes lines
● N x N array
● N = 2k for some k
● The entire cache cannot even hold one complete row
● Hence, the total lines in the cache is 1024
● And N > 1024

Lets refresh your caches!

● Notice the memory accesses:

n = src[1];
n += src[1 - N];
n += src[- N];
n += src[-1 - N];
n += src[-1];
n += src[-1 + N];
n += src[N];
n += src[1 + N];
/* update the next generation */
*dst = (((*src != 0) && (n == 2))
|| (n == 3)) ? 1 : 0;

src[-1-N] src[-N] src[1-N]

src[-1] src[0]
*src

src[1]

src[-1+N] src[N] src[1+N]

Lets refresh your caches!

● Notice the memory accesses:

● Note that the last access in every iteration is *src

n = src[1];
n += src[1 - N];
n += src[- N];
n += src[-1 - N];
n += src[-1];
n += src[-1 + N];
n += src[N];
n += src[1 + N];
/* update the next generation */
*dst = (((*src != 0) && (n == 2))
|| (n == 3)) ? 1 : 0;

src[-1-N] src[-N] src[1-N]

src[-1] src[0]
*src

src[1]

src[-1+N] src[N] src[1+N]

Lets refresh your caches!

● Lets see how the array maps in the cache

● Every column cell maps to the same set in the cache

N = 2k N%1024 == 0→

Lets refresh your caches!

● Part 1
● From the last iteration, the cache has the

middle line, as *src (Now src[-1] was accessed
last)

Set i's content

Lets refresh your caches!

● Part 1 Set i's content

H

Lets refresh your caches!

● Part 1 Set i's content

H

M

Lets refresh your caches!

● Part 1 Set i's content

H

MHH

Lets refresh your caches!

● Part 1 Set i's content

H

MHH

M

Lets refresh your caches!

● Part 1 Set i's content

H

MHH

M

HHM

Lets refresh your caches!

● Part 1 Set i's content

H

MHH

M

HHM

M

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

Set (i+1)'s content

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

M

Set (i+1)'s content

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

M

M

Set (i+1)'s content

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

M

MMH

Set (i+1)'s content

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

MMH

M

Set (i+1)'s content

M

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

M

MMH

M

HM

Set (i+1)'s content

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

M

MMH

M

MHM

Set (i+1)'s content

Lets refresh your caches!

● Part 1: Iteration 2 Set i's content

M

MMH

M

MHM

M

Set (i+1)'s content

Lets refresh your caches!

● Part 2
● 3-Way associative, so we have all the lines

already in our cache from last iteration

Set i's content

Lets refresh your caches!

● Part 2 Set i's content

H

HHH

H

HHH

H

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

Set (i+1)'s content

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

M

Set (i+1)'s content

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

M

M

Set (i+1)'s content

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

M

MHH

Set (i+1)'s content

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

M

MHH

Set (i+1)'s content

H

HH

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

M

MHH

Set (i+1)'s content

H

MHH

Lets refresh your caches!

● Part 2: Iteration 2 Set i's content

M

MHH

Set (i+1)'s content

H

MHH

H

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

