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Malloc Lab

● Due Yesterday
● Hopefully you are past the 60% mark
● Any questions?



  

Proxy Lab

● Due 4th December, 2013
● No late days for the assignment!
● Kind of not autograded
● We will have interviews with each of you
● NOT a group based assignment



  

Proxy lab

● Three main steps
– Step 1: Implement a sequential proxy
– Step 2: Make the proxy concurrent
– Step 3: Implement a web-cache 



  

Implementing a sequential proxy

● What is a proxy?

Web serverClient

Hello Server!

Here is your data: ...



  

Implementing a sequential proxy

● What is a proxy?

Web serverClient

Hello Server!

Here is 
your data: ...

Proxy

Hello Server!

Here is 
your data: ...



  

Implementing a sequential proxy

● Why use a proxy?
– Content filtering

Web serverClient

Hello Server!

Here is 
your data: 'ac'

Proxy

Hello Server!

Here is 
your data: 'abc'



  

Implementing a sequential proxy

● Why use a proxy?
– Anonymity

Web serverClient(Musleh)

Hello Server!

Here is 
your data: ...'

Proxy(someProxy)

Hello Server!

Here is 
your data: ...

Web serverClient(Musleh)

Hello Server!

Here is your data: ...

Musleh contacted
me!

someProxy contacted
me!



  

Implementing a sequential proxy

● Why use a proxy?
– Caching

Web serverClient

Hello Server!

Here is 
your data: 'abc'

Proxy

Hello Server!

Here is 
your data: 'abc'

Web serverClient

Hello Server!

Here is 
your data: 'abc'

Proxy



  

Implementing a sequential proxy

● So far, you've seen basic client-server communication
● A proxy is a special entity

– It is a server to the clients
– And a client to the servers!

● You've seen (hopefully...) code for a simple server and 
a client, use this to your advantage



  

Implementing a sequential proxy



  

Implementing a sequential proxy

● Lets look at the technical details
– You will be implementing the HTTP/1.0 GET 

request protocol
● Fairly simple, might get a little tedious

– Hence, not all websites will work
● Websites that use POST requests
● Websites with HTTPS

– Examples of websites that do work:
● cs.cmu.edu
● qatar.cmu.edu/~kharras/



  

Implementing a sequential proxy

● Lets look at the technical details
– In any case, your server must be robust (After all, 

it is a server!)
– It should not crash on malformed requests, or 

requests to non-existent websites



  

Implementing a sequential proxy

./port_for_user.pl



  

Implementing a sequential proxy

● Some really helpful tools
– telnet

– curl

– netcat



  

Tools!

● telnet

– Really rudimentary 'client'
– You have to write the entire request yourself

● Including the headers!
– This is good, you can test your proxy incrementally
– Try writing malformed requests to test the 

robustness of your proxy



  

Tools!

● curl

– A more intelligent “client”
– Builds valid HTTP requests automatically
– curl http://www.cmu.edu

– curl –proxy lemonshark.ics.cs.cmu.edu:15213 
http://www.cmu.edu

http://www.cmu.edu/
http://www.cmu.edu/


  

Tools!

● netcat

– “client” and a “server”!
– Server:

● netcat -l -p 15213
– Client:

● netcat localhost 15213



  

Tools!

● Host a netcat server
● Request to this server through your proxy

– This will help you look at the EXACT request your 
proxy is performing to the web servers



  

Sockets API

● int socket(int domain, int type, int protocol);

● int bind(int socket, const struct sockaddr *address, 
socklen_t address_len);

● int listen(int socket, int backlog);

● int accept(int socket, struct sockaddr *address, socklen_t 
*address_len);

● int connect(int socket, struct sockaddr *address, 
socklen_t address_len);

● int close(int fd);

● ssize_t read(int fd, void *buf, size_t nbyte);

● ssize_t write(int fd, void *buf, size_t nbyte);



  

Step 2: Make it concurrent

● When you are done with your sequential proxy, and it 
is working PERFECTLY, you can move on to making 
it sequential

● You will learn threads in the next week, you will 
need them to complete this part and get a full grade

● In all the implementations you have seen so far, every 
client is processed fully before moving on to the next 
client



  

Step 2: Make it concurrent

● But this is bad!
– A typical webpage has many, many requests

● The webpage source
● Stylesheets, scripts
● Images etc..

– Do you want to load each of these one at a time?
– More importantly, if I am viewing the same website, 

do you really want to wait until the webpage is 
complete sent to me?

● Hence, your proxy will need to handle multiple requests 
at the same time



  

Step 2: Make it concurrent

We will look at this in detail next time, once you have 
done threading in class!



  

Step 3: Caching web objects!

● Your proxy should cache previously requested objects
– With certain limits ofcourse! See the writeup for 

details
– This has NOTHING to do with cachelab!
– You will need to implement the LRU eviction 

policy



  

Step 3: Caching web objects!

● Wait, didn't we say we're going to have multiple 
threads?
– What happens if two threads try to modify the 

cache at the same time?
– Specifically, what happens if two threads try to 

modify the same object in the cache at the same 
time?

– Even more specifically, what happens if one thread 
is reading an object, while another is modifying 
the object?



  

Step 3: Caching web objects!

● Welcome to the world of concurrency!
– You will need to implement “mutual exclusion”
– Only one thread can “write” at any time
– Multiple threads can “read” at the same time
– How will you implement this stuff?



  

Step 3: Caching web objects!

● Mutexes
– Allow only one thread to run a section of code at 

a time
– If other threads are trying to run the same section 

of the code, they will wait
● Semaphores

– A more general version of a mutex
– Allows a specified number of threads to access the 

section at any point



  

Step 3: Caching web objects!

● Luckily, most of this stuff is already implemented for 
you!
– You will learn about locks in the next week
– We will look at them in more detail after you see them

Quick Reference:
● pthread_rwlock_t lock;
● pthread_rwlock_init(&lock,NULL);
● pthread_rwlock_rdlock(&lock);
● pthread_rwlock_wrlock(&lock);
● pthread_rwlock_unlock(&lock);



  

Grading

● You will need to test your proxy very well
● There is no autograder, so you will have to come up 

with your own tests
● We will interview each of you, and test all aspects of 

your proxy like
– Handling multiple requests
– Proper caching
– Implementation of LRU policy
– And everything else!



  

Any Questions?
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