

15-213 Recitation 12

Introduction to Computer
Systems

Fahim Dalvi
21 November, 2013

Malloc Lab

● Due Yesterday
● Hopefully you are past the 60% mark
● Any questions?

Proxy Lab

● Due 4th December, 2013
● No late days for the assignment!
● Kind of not autograded
● We will have interviews with each of you
● NOT a group based assignment

Proxy lab

● Three main steps
– Step 1: Implement a sequential proxy
– Step 2: Make the proxy concurrent
– Step 3: Implement a web-cache

Implementing a sequential proxy

● What is a proxy?

Web serverClient

Hello Server!

Here is your data: ...

Implementing a sequential proxy

● What is a proxy?

Web serverClient

Hello Server!

Here is
your data: ...

Proxy

Hello Server!

Here is
your data: ...

Implementing a sequential proxy

● Why use a proxy?
– Content filtering

Web serverClient

Hello Server!

Here is
your data: 'ac'

Proxy

Hello Server!

Here is
your data: 'abc'

Implementing a sequential proxy

● Why use a proxy?
– Anonymity

Web serverClient(Musleh)

Hello Server!

Here is
your data: ...'

Proxy(someProxy)

Hello Server!

Here is
your data: ...

Web serverClient(Musleh)

Hello Server!

Here is your data: ...

Musleh contacted
me!

someProxy contacted
me!

Implementing a sequential proxy

● Why use a proxy?
– Caching

Web serverClient

Hello Server!

Here is
your data: 'abc'

Proxy

Hello Server!

Here is
your data: 'abc'

Web serverClient

Hello Server!

Here is
your data: 'abc'

Proxy

Implementing a sequential proxy

● So far, you've seen basic client-server communication
● A proxy is a special entity

– It is a server to the clients
– And a client to the servers!

● You've seen (hopefully...) code for a simple server and
a client, use this to your advantage

Implementing a sequential proxy

Implementing a sequential proxy

● Lets look at the technical details
– You will be implementing the HTTP/1.0 GET

request protocol
● Fairly simple, might get a little tedious

– Hence, not all websites will work
● Websites that use POST requests
● Websites with HTTPS

– Examples of websites that do work:
● cs.cmu.edu
● qatar.cmu.edu/~kharras/

Implementing a sequential proxy

● Lets look at the technical details
– In any case, your server must be robust (After all,

it is a server!)
– It should not crash on malformed requests, or

requests to non-existent websites

Implementing a sequential proxy

./port_for_user.pl

Implementing a sequential proxy

● Some really helpful tools
– telnet

– curl

– netcat

Tools!

● telnet

– Really rudimentary 'client'
– You have to write the entire request yourself

● Including the headers!
– This is good, you can test your proxy incrementally
– Try writing malformed requests to test the

robustness of your proxy

Tools!

● curl

– A more intelligent “client”
– Builds valid HTTP requests automatically
– curl http://www.cmu.edu

– curl –proxy lemonshark.ics.cs.cmu.edu:15213
http://www.cmu.edu

http://www.cmu.edu/
http://www.cmu.edu/

Tools!

● netcat

– “client” and a “server”!
– Server:

● netcat -l -p 15213
– Client:

● netcat localhost 15213

Tools!

● Host a netcat server
● Request to this server through your proxy

– This will help you look at the EXACT request your
proxy is performing to the web servers

Sockets API

● int socket(int domain, int type, int protocol);

● int bind(int socket, const struct sockaddr *address,
socklen_t address_len);

● int listen(int socket, int backlog);

● int accept(int socket, struct sockaddr *address, socklen_t
*address_len);

● int connect(int socket, struct sockaddr *address,
socklen_t address_len);

● int close(int fd);

● ssize_t read(int fd, void *buf, size_t nbyte);

● ssize_t write(int fd, void *buf, size_t nbyte);

Step 2: Make it concurrent

● When you are done with your sequential proxy, and it
is working PERFECTLY, you can move on to making
it sequential

● You will learn threads in the next week, you will
need them to complete this part and get a full grade

● In all the implementations you have seen so far, every
client is processed fully before moving on to the next
client

Step 2: Make it concurrent

● But this is bad!
– A typical webpage has many, many requests

● The webpage source
● Stylesheets, scripts
● Images etc..

– Do you want to load each of these one at a time?
– More importantly, if I am viewing the same website,

do you really want to wait until the webpage is
complete sent to me?

● Hence, your proxy will need to handle multiple requests
at the same time

Step 2: Make it concurrent

We will look at this in detail next time, once you have
done threading in class!

Step 3: Caching web objects!

● Your proxy should cache previously requested objects
– With certain limits ofcourse! See the writeup for

details
– This has NOTHING to do with cachelab!
– You will need to implement the LRU eviction

policy

Step 3: Caching web objects!

● Wait, didn't we say we're going to have multiple
threads?
– What happens if two threads try to modify the

cache at the same time?
– Specifically, what happens if two threads try to

modify the same object in the cache at the same
time?

– Even more specifically, what happens if one thread
is reading an object, while another is modifying
the object?

Step 3: Caching web objects!

● Welcome to the world of concurrency!
– You will need to implement “mutual exclusion”
– Only one thread can “write” at any time
– Multiple threads can “read” at the same time
– How will you implement this stuff?

Step 3: Caching web objects!

● Mutexes
– Allow only one thread to run a section of code at

a time
– If other threads are trying to run the same section

of the code, they will wait
● Semaphores

– A more general version of a mutex
– Allows a specified number of threads to access the

section at any point

Step 3: Caching web objects!

● Luckily, most of this stuff is already implemented for
you!
– You will learn about locks in the next week
– We will look at them in more detail after you see them

Quick Reference:
● pthread_rwlock_t lock;
● pthread_rwlock_init(&lock,NULL);
● pthread_rwlock_rdlock(&lock);
● pthread_rwlock_wrlock(&lock);
● pthread_rwlock_unlock(&lock);

Grading

● You will need to test your proxy very well
● There is no autograder, so you will have to come up

with your own tests
● We will interview each of you, and test all aspects of

your proxy like
– Handling multiple requests
– Proper caching
– Implementation of LRU policy
– And everything else!

Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

