

15-213 Recitation 13

Introduction to Computer
Systems

Fahim Dalvi
28 November, 2013

Proxy Lab

● Due 4th December, 2013
● No late days for the assignment!
● We will have interviews with each of you

– NOT a group based assignment
– Interviews are on the Reading Day, the schedule

will be out soon!

Proxy lab

● Three main steps
– Step 1: Implement a sequential proxy
– Step 2: Make the proxy concurrent
– Step 3: Implement a web-cache

Step 1: Implement a sequential proxy

● Check out last recitation!
● Hopefully you are done with this, or at least started

and are close

Step 2: Make the proxy concurrent

● You have to use the Pthreads library
● Why not just use 'fork()' and avoid all the hassle?

Step 2: Make the proxy concurrent

● You have to use the Pthreads library
● Why not just use 'fork()' and avoid all the hassle?

– Overhead of creating a new process, your proxy
should be fast!

– Eventually you will also need to 'cache' web
objects, sharing stuff between processes is much
harder!

Step 2: Make the proxy concurrent

● You have to use the Pthreads library
● Why not just use 'fork()' and avoid all the hassle?

– Overhead of creating a new process, your proxy
should be fast!

– Eventually you will also need to 'cache' web
objects, sharing stuff between processes is much
harder!

Step 2: Make the proxy concurrent

● So you can share data very easily between threads
● With great power, comes great responsibility (and

headaches)
– Possibility of race conditions

Lets look at some code!

#include “csapp.h”

static volatile int global = 0;

int main(void) {
 pthread_t tid1, tid2;
 pthread_create(&tid1, NULL,

thread, NULL);
 pthread_create(&tid2, NULL,

thread, NULL);
 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 printf(“%d”, global);
 return 0;
}

void *thread(void *vargp) {
 int i;
 for (i = 0; i < 100; i++) {
 global++;
 }
 return NULL;
}

What will be
the output?

Lets look at some code!

#include “csapp.h”

static volatile int global = 0;

int main(void) {
 pthread_t tid1, tid2;
 pthread_create(&tid1, NULL,

thread, NULL);
 pthread_create(&tid2, NULL,

thread, NULL);
 pthread_join(tid1, NULL);
 pthread_join(tid2, NULL);
 printf(“%d”, global);
 return 0;
}

void *thread(void *vargp) {
 int i;
 for (i = 0; i < 100; i++) {
 global++;
 }
 return NULL;
}

Any value
from 2-200!

Lets look at some code!

● Shared variable is global
● global++

– Can we divided into three atomic operations
1)Read the variable into a register
2)Increment
3)Store the variable back to memory

Normal Order of Operations
 R I S→ →

Lets look at some code!

● Lets look at some possibilities
– 200 This is simple, if one thread finishes →

completely first, and then the second thread starts
– 100 A little tricky, access pattern must be → R R I

S I S, where red is thread 1, and blue is thread 2.
– 2 The trickiest of them all!→

● Imagine, R R I S R I S ….. I S (Thread 2 run's
99 times)

● I S R I S R I S …... I S (Thread 1 run's its
remaining 99 times)

A peculiar example

● Thread's can access each other's stacks. Consider the
following example:

#include<stdio.h>
#include<pthread.h>

void *thread(void *vargp)
{

int myid = *(int *)vargp;
while(1) {

*(int *)vargp = *(int *)vargp +1;
}

}

int main()
{

int i;
pthread_t tid;
pthread_create(&tid, NULL, thread, (void *)&i);

while(1)
printf("%d\n",i);

pthread_exit(NULL);
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

