15-213 Recitation 2

Introduction to Computer Systems

Fahim Dalvi 5 September, 2013

Today

- Datalab
- Integers Review
- Floating Point Basics
- Examples

Datalab

- Due: Monday, September 9 at 11:59 PM!
- Some interesting functions
 - Two's complement: ~x+1(Corner case)
 - Flipping a bit: XOR with 1
- Questions?

Integers

- Decimal ↔ Binary
- Signed vs Unsigned
- Two's complement
- Notes: Implicit Casting
 - Always cast to unsigned int incase you have mixed types in an expression
 - Is -1 < 0? What about -1 < 0U?
- Ranges

Floating Point

• Basic Format

S	Exponent	Fraction (Mantissa)				
1-bit	8-bits	23-bits				

$$-1^S \times M \times 2^E$$

Where E is based on the Bias

$$Bias = 2^{(k-1)} - 1 = 2^{(8-1)} - 1 = 127$$

k = exponent bits

Interpreting the Bits

• Exponent

- 0000..000 \rightarrow Denormalized Form
 - E = -Bias + 1
 - Frac = 0.FFFFF...
- eeee..eee → Normalized Form
 - E = Exponent Bias
 - Frac = **1**.FFFFF....
- 1111..111 → Special
 - If Frac = 0000.000 \rightarrow Infinity
 - Else \rightarrow NaN

Rounding

- Round to even
 - Like regular rounding except for the exactly half case
 - For exactly half case, check the LSB that will remain. If it is 1, round up, else round down

1.10	1001	Greater then 0.5, round up	1.11
1.10	0110	Less than 0.5, round down	1.10
1.11	1000	Round to even up	10.00
1.10	1000	Round to even down	1.10

• We will use 8-bits for convenience

S EEEE FFF

8-bit floating point number

• Convert: 5

Examples! - Normalized Number to Float

- Convert: 5
 - S=0 (As 5 is positive)
 - Convert 5 to binary \rightarrow 5₁₀ = 101₂
 - Normalized Value, so lets fit the leading 1

1.01₂ X **2**²

- F = 010
- $E = 2 \rightarrow Exp = E + Bias = 2 + 7 = 9_{10} = 1001_{2}$
- Answer \rightarrow 0 1001 101
- What about -5?

• Convert: 6/512

Examples! - Denormalized Number to Float

- Convert: 6/512
 - S=0
 - Convert to binary $\rightarrow 0.01171875_{10} = 0.00000011_2$
 - Denormalized \rightarrow E = -Bias + 1 = -6

0.11 x 10⁻⁶

- F = 110
- Answer = 0 0000 110

- A Simple trick:
 - Remember the fractional representation?

2 ⁻¹	2-2	2 -3	2-4	2-5	2-6	2-7	2-8	2-9
1	1	1	1	1	1	1	1	1
2	4	8	16	32	64	128	256	512

- Lets write it in terms of 512

						2-7		
<u>256</u> 512	128	64	32	16	8	_4	2	1
512	512	512	512	512	512	512	512	512

- We need 6 512th's, hence the binary is 000000110

• Convert 27

Examples! - Rounding

- Convert 27
 - -S = 0
 - Convert 27 to binary \rightarrow 11011₂
 - Normalized, so \rightarrow 1.1011₂ x 2⁴
 - $E = 4 \rightarrow Exp = E + Bias = 4 + 7 = 11 = 1011_2$
 - Frac \rightarrow 1011 (Too many digits, we need to round)
 - 1011 \rightarrow Round to even up \rightarrow 110
 - Answer \rightarrow 0 1011 110

• Convert: 1 1001 010

Examples! - Normalized Float to Number

- Convert: 1 1001 010
 - Sign bit is 1, so negative
 - Exp = 1001, Normalized \rightarrow E = Exp Bias
 - $1001_2 = 9_{10} \rightarrow E = 9 7 = 2$
 - Frac \rightarrow 010, hence Number is 1.010
 - 1.010 x $2^2 \rightarrow 101_2 \rightarrow 5_{10}$
 - Answer \rightarrow -5

• Convert: 0 0000 110

Examples! - Denormalized Float to Number

- Convert: 0 0000 110
 - Sign bit says its positive
 - Denormalized, so $E \rightarrow -6$
 - Frac \rightarrow 110 \rightarrow 0.110₂
 - Number $\rightarrow 0.110_2 \times 2^{-6} \rightarrow 0.0000011_2$
 - Answer \rightarrow 6/512

• Convert: 0 1011 110₂

Examples! - Rounding error

- Convert: 0 1011 110₂
 - Sign bit says answer is positive
 - Normalized \rightarrow Exp = 1011₂ = 11₁₀ \rightarrow
 - E = Exp Bias = 11 7 = 4
 - Frac = 110
 - Number = 1.110 x $2^4 \rightarrow 11100$
 - Answer $\rightarrow 11100_2 \rightarrow 28!$

Questions?

- New Office Hours:
 - Sunday : 1:00 PM \rightarrow 2:30 PM
 - Thursday : 2:00 PM \rightarrow 3:30 PM