15-21 3 Recitation 5

Introduction to Computer

Systems

Fahim Dalvi
12 September, 2013

Today

e Assembly Review

— Basics
— Operations

e Bomblab!

— Basics
— Tools

- Walkthrough

Assembly — Architecture!

Program counter

- Always contains the address of the next instruction

— eip (x86), rip (x86-64)

Stack registers

- Contains address of the bottom and the top of the stack
- esp and ebp (x86)

General purpose registers

- eax, ebx, ecx, edx, esi, edi (x86)

- rax, rbx, rcx, rdx, rsi, rdi, 18, r9, r10, r11, r12, r13, r14, r15 and
sometimes rbp (x86-64)

Condition codes

Data types

Integer data — 1,2 or 4 bytes (x86) or 8 bytes
(x86-64)

Addresses — 4 bytes (x86) or 8 bytes (x86-64)
Floating point data

- 4, 8 or 10 bytes
No aggregate data types!

- Means no arrays, no strings!

Operations - Accessing

» Registers
- %eax, %ebx
- Some instructions, as you will learn, use and store results in special registers
* Memory
- If %eax contains an address that you want to deference, you can use (%eax)
- General memory addressing format is D(Rb, Ri, S)
* Rb is the base address register
* Ri is the index address register
e S is the index scale (1, 2, 4 or 8)
* D is the constant offset
 Equivalent in C style: Rb[Ri*S + D]
* Immediate values
- Examples: $0x15213, $-11228
- Like a C constant, except its prefixed by a $

- 1, 2 or 4 bytes (or 8 on x86-64)

Memory Operations

« movl src,dest

- Example: movl $0x15213, %eax

- Can move data between registers and memory

— Only prohibited operation - Memory to Memory

o leal src,dest

Example: leal (%eax,%eax,2),%eax
Computes an address specified by src and saves it in dst
Does not actually dereference src!
Sometimes used by compilers as a fast alternative to imul

« Examples above triples %eax

Arithmetic Operations

« Two operand commands — Always src,dest

— Format Result

addl src,dest dst+=src
subl src,dest dst-=src
imull src,dest dst*=src
sall src,dest dst<<=src
sarl src,dest dst>>=src
xorl src,dest dst?=src
andl src,dest dst&=src
orl src,dest dst|=src

Arithmetic Operations

 One operand commands

— Format Result

incl dst dst++
decl dst dst--
negl dst dst = -dst
notl dst dst = ~dst

» Equivalent 64-bit operations are also available (e.g. addq)

Lets look at a complete example

void foo () {

int a

int b

pushq %rbp

movq %rsp, %rbp

movl $0, -16(%rbp)
movl $2, -12(%rbp)
movl -12(%rbp), %edx
movl -16(%rbp), %eax
subl %edx, %eax

movl %eax, -8(%rbp)
movl -8(%rbp), %eax
sall $2, %eax

movl %eax, -4(%rbp)
leave

ret

Condition codes

Set as side-effect of arithmetic operations in the eflags register
CF set on unsigned integer overflow

ZF set if result was 0

SF set if result was negative

OF set on signed integer overflow

testl a,b and cmpl a,b are similar to andl a,b and subl a,b but
only set condition codes

Use set* reg instructions to set register reg based on state of
condition codes.

Conditionals

* Change the instruction pointer with the j* operations

- jmp dst unconditionally jumps to the address dst

- Use other jump variants (e.g. jne or jg) to

conditionally jump

e Usually a testl or cmpl followed by a conditional
jump

Lets look at (another) complete example

void bar () { pushq %rbp
movq %rsp, %rbp
int a = 2; movl $2, -8(%rbp)
int b = 0; movl $0, -4(%rbp)
if (a > 7) cmpl $7, -8(%rbp)
jle .L3
b++; addl $1, -4(%rbp)

leave

ret

Bomblab!

Series of stages, all asking for a password
Give the wrong password and the bomb explodes

- You lose a half point every time your bomb
explodes

- The bomb should never explode if you’re careful

We give you the binary, you have to find the
passwords

The binary ONLY runs on the shark machine

Bomblab - Tools

» Syntax: $> gdb ./bomb
e Useful commands

- run <args> : Runs the bomb with specified command line arguments

break <location> : Stops the bomb just before the instruction at the specified location is
about to be run

info functions : Lists the names of all functions.

stepi : Steps the program one instruction. nexti will do the same, but skipping over function
calls.

print <variable> : Prints the contents of a variable

x/<format> <address> : Prints contents of the memory area starting at the address in a
specified format

disassemble <address> : Displays the assembly instructions near the specified address
layout <type> : Changes the layout of GDB.

help and help <command> : Explains GDB usage.

Bomblab - Tools

e Strings

— Dumps all strings in the binary

- Function names, string literals, etc
* objdump

- The -d option disassembles the bomb and outputs the assembly
to the terminal

- The -t option dumps the symbol table (all function and global
variable names) to the terminal

- You probably want to redirect the output into a file

e objdump -d ./bomb > bomb asm

Lets check it out!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

