

15-213 Recitation 3

Introduction to Computer
Systems

Fahim Dalvi
12 September, 2013

Today

● Assembly Review

– Basics
– Operations

● Bomblab!

– Basics

– Tools
– Walkthrough

Assembly – Architecture!

● Program counter

– Always contains the address of the next instruction

– eip (x86), rip (x86-64)
● Stack registers

– Contains address of the bottom and the top of the stack
– esp and ebp (x86)

● General purpose registers

– eax, ebx, ecx, edx, esi, edi (x86)
– rax, rbx, rcx, rdx, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15 and

sometimes rbp (x86-64)
● Condition codes

Data types

● Integer data – 1,2 or 4 bytes (x86) or 8 bytes
(x86-64)

● Addresses – 4 bytes (x86) or 8 bytes (x86-64)

● Floating point data

– 4, 8 or 10 bytes
● No aggregate data types!

– Means no arrays, no strings!

Operations - Accessing

● Registers

– %eax, %ebx
– Some instructions, as you will learn, use and store results in special registers

● Memory

– If %eax contains an address that you want to deference, you can use (%eax)
– General memory addressing format is D(Rb, Ri, S)

● Rb is the base address register
● Ri is the index address register
● S is the index scale (1, 2, 4 or 8)
● D is the constant offset
● Equivalent in C style: Rb[Ri*S + D]

● Immediate values

– Examples: $0x15213, $-11228
– Like a C constant, except its prefixed by a $
– 1, 2 or 4 bytes (or 8 on x86-64)

Memory Operations

● movl src,dest

– Example: movl $0x15213, %eax

– Can move data between registers and memory

– Only prohibited operation Memory to Memory→

● leal src,dest

– Example: leal (%eax,%eax,2),%eax

– Computes an address specified by src and saves it in dst

– Does not actually dereference src!

– Sometimes used by compilers as a fast alternative to imul
● Examples above triples %eax

Arithmetic Operations

● Two operand commands Always src,dest→

– Format Result
addl src,dest dst+=src

subl src,dest dst-=src

imull src,dest dst*=src

sall src,dest dst<<=src

sarl src,dest dst>>=src

xorl src,dest dst^=src

andl src,dest dst&=src

orl src,dest dst|=src

Arithmetic Operations

● One operand commands

– Format Result
incl dst dst++

decl dst dst--

negl dst dst = -dst

notl dst dst = ~dst

● Equivalent 64-bit operations are also available (e.g. addq)

Lets look at a complete example

void foo () {

int a = 0;

int b = 2;

int c = a − b ;

int d = c << 2 ;

}

pushq %rbp

movq %rsp, %rbp

movl $0, -16(%rbp)

movl $2, -12(%rbp)

movl -12(%rbp), %edx

movl -16(%rbp), %eax

subl %edx, %eax

movl %eax, -8(%rbp)

movl -8(%rbp), %eax

sall $2, %eax

movl %eax, -4(%rbp)

leave

ret

Condition codes

● Set as side-effect of arithmetic operations in the eflags register

● CF set on unsigned integer overflow

● ZF set if result was 0

● SF set if result was negative

● OF set on signed integer overflow

● testl a,b and cmpl a,b are similar to andl a,b and subl a,b but
only set condition codes

● Use set* reg instructions to set register reg based on state of
condition codes.

Conditionals

● Change the instruction pointer with the j* operations

– jmp dst unconditionally jumps to the address dst
– Use other jump variants (e.g. jne or jg) to

conditionally jump
● Usually a testl or cmpl followed by a conditional
jump

Lets look at (another) complete example

void bar () {

int a = 2;

int b = 0;

if (a > 7) {

b++;

}

}

pushq %rbp

movq %rsp, %rbp

movl $2, -8(%rbp)

movl $0, -4(%rbp)

cmpl $7, -8(%rbp)

jle .L3

addl $1, -4(%rbp)

.L3:

leave

ret

Bomblab!

● Series of stages, all asking for a password

● Give the wrong password and the bomb explodes

– You lose a half point every time your bomb
explodes

– The bomb should never explode if you’re careful
● We give you the binary, you have to find the

passwords

● The binary ONLY runs on the shark machine

Bomblab - Tools

● Syntax: $> gdb ./bomb

● Useful commands

– run <args> : Runs the bomb with specified command line arguments
– break <location> : Stops the bomb just before the instruction at the specified location is

about to be run
– info functions : Lists the names of all functions.
– stepi : Steps the program one instruction. nexti will do the same, but skipping over function

calls.
– print <variable> : Prints the contents of a variable
– x/<format> <address> : Prints contents of the memory area starting at the address in a

specified format
– disassemble <address> : Displays the assembly instructions near the specified address
– layout <type> : Changes the layout of GDB.
– help and help <command> : Explains GDB usage.

Bomblab - Tools

● Strings

– Dumps all strings in the binary

– Function names, string literals, etc
● objdump

– The -d option disassembles the bomb and outputs the assembly
to the terminal

– The -t option dumps the symbol table (all function and global
variable names) to the terminal

– You probably want to redirect the output into a file
● objdump -d ./bomb > bomb asm

Bomblab

Lets check it out!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

