

15-213 Recitation 5

Introduction to Computer
Systems

Fahim Dalvi
26 September, 2013

Today

● Buflab

● Arrays

● Structs

– Data Alignment
● Unions

Buflab

● Due: Wednesday, 2nd October

● Not a lot of time for this lab

● A series of exercises asking you to overflow the stack
and change execution

– You do this by providing inputs that are long,
really long

– No negative grading \o/

Buflab – Remember the stack?

︙

︙

Argument 2

Argument 1

Return Address

Old %ebp

Local Stack

Local Stack

︙

︙

︙
%esp

%ebp

old %ebp

4 bytes

A
dd

re
ss

es
 in

cr
ea

se
 t

hi
s

w
ay

Buflab – Byte ordering

...

...

A
dd

re
ss

es
 in

cr
ea

se
 t

hi
s

w
ay

What happens when we write 0x12345678 to %esp?

%esp

Addresses increase this way

Buflab – Byte ordering

...

78 56 34 12

...

A
dd

re
ss

es
 in

cr
ea

se
 t

hi
s

w
ay

What happens when we write 0x12345678 to %esp?

%esp

Addresses increase this way

Buflab - Exploits

● Earlier stages:

– Put your byte code in a file

– Feed it through hex2raw
● Later stages:

– Write the required “corruption” code in a C file

– Compile it
> gcc -m32 codeFile.c

– Disassemble it

– Use the hex codes there to create your exploit strings

Buflab

● Start early

● Read the writeup

– Very detailed

– Gives excellent hints
● Feel free to ask questions on Piazza!

Arrays

● You've hopefully seen them in Bomblab

● Just contiguous memory locations

● Multidimensional Arrays

– Stored in row order
● Remember: No bound checking is done!

● Hence accessing the 100th location in an array of
length 90 would give non-deterministic errors

Struct

● Structs are also stored as contiguous memory

● Lets look at an example:

struct someStruct{
int someInt;
char someChar;
int someInt;

}

Struct

● Structs are also stored as contiguous memory

● Lets look at an example:

struct someStruct{
int someInt;
char someChar;
int someInt;

} 0x00 0x04 0x05 0x09

Struct

● Structs are also stored as contiguous memory

● Lets look at an example:

struct someStruct{
int someInt;
char someChar;
int someInt;

} 0x00 0x04 0x05 0x09

But wait, are we
forgetting something?

Struct – Data Alignment

● We need to align the individual elements

● Lets look at an example:

struct someStruct{
int someInt;
char someChar;
int someInt;

} 0x00 0x04 0x05 0x08 0x0C

Data Alignment – Quick Cheat Sheat

Type x86 x86-64
char - -
short 02 02

int, float 002 002

double 002 0002

long double 002 0002

char* 002 0002

Data Alignment

● Highly probable exam question.

– Given a struct, calculate the number of bytes it
will consume:

struct someStruct{
char oneChar;
int someInt;
char someChar;
char someOtherChar;
char* aPtr;

}

Data Alignment

struct someStruct{
char oneChar;
int someInt;
char someChar;
char someOtherChar;
char* aPtr;

}

0x00 0x08 0x09 0x0C 0x100x0A0x04

Size : 16 bytes

Data Alignment

● Highly probable exam followup question.

– Given a struct, minimize the number of bytes it
occupies

struct someStruct{
char oneChar;
int someInt;
char someChar;
char someOtherChar;
char* aPtr;

}

Data Alignment

struct someStruct{
int someInt;
char* aPtr;
char oneChar;
char someChar;
char someOtherChar;

}

0x00 0x08 0x09 0x0C0x0A0x04

Size : Only 12 bytes

Unions

union someStruct{
int someInt;
char* aPtr;
char oneChar;
char someChar;
char someOtherChar;

}

0x00 0x04

Size : 4 bytes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19

