15-21 3 Recitation 5

Introduction to Computer

Systems

Fahim Dalvi
26 September, 2015

Today

Buflab
Arrays
Structs

- Data Alignment

Unions

Buflab

 Due: Wednesday, 27 October
 Not a lot of time for this lab

* A series of exercises asking you to overflow the stack
and change execution

- You do this by providing inputs that are long,
really long

- No negative grading \o/

Buflab — Remember the stack?

old %eb

Addresses increase this way

A
Y

Buflab — Byte ordering

What happens when we write 0x12345678 to %esp?

%esp

Addresses increase this way

Addresses increase this way

Buflab — Byte ordering

What happens when we write 0x12345678 to %esp?

%esp

Addresses increase this way

Addresses increase this way

Buflab - Exploits

« Earlier stages:
— Put your byte code in a file
- Feed it through hex2raw

e Later stages:

Write the required “corruption®” code in a C file
Compile it

> gcc -m32 codeFile.c
Disassemble it

Use the hex codes there to create your exploit strings

Buflab

» Start early

 Read the writeup
- Very detailed

— Gives excellent hints

* Feel free to ask questions on Piazza!

You've hopefully seen them in Bomblab
Just contiguous memory locations
Multidimensional Arrays

— Stored in row order

Remember: No bound checking is done!

Hence accessing the 100%™ location in an array of
length 90 would give non-deterministic errors

Struct

» Structs are also stored as contiguous memory

* Lets look at an example:

struct someStruct{
int somelnt;
char someChar;
int somelnt;

}

Struct

» Structs are also stored as contiguous memory

* Lets look at an example:

struct someStruct{

char someChar;

int someInt; b4
} Ox04 0x05

Struct

» Structs are also stored as contiguous memory

* Lets look at an example:

struct someStruct{

char someChar;

int someInt; b4
} Ox04 0x05

But wait, are we
forgetting something?

Struct — Data Alignment

« We need to align the individual elements

* Lets look at an example:

struct someStruct{
int somelnt;
D Soer: NS 42

int someInt; b 1
} 0x04 0x05

Data Alignment — Quick Cheat Sheat

Type
char

short
int, float
double
long double

char*®

x86-64

Data Alignment

* Highly probable exam question.

- Given a struct, calculate the number of bytes it
will consume:

struct someStruct{
char oneChar;
int somelnt;
char someChar;

char* aPtr;

Data Alignment

struct someStruct{

char oneChar;
int somelnt;
char someChar;

char* aPtr;

¥
B NS
r r r

0x00

Ox04

A A T T

Ox08 0x09 OxOA Ox0C

Size : 16 bytes

Data Alignment

« Highly probable exam followup question.

- Given a struct, minimize the number of bytes it
occupies

struct someStruct{
char oneChar;
int somelnt;
char someChar;

char* aPtr;

Data Alignment

struct someStruct{
int somelnt;
char* aPtr;
char oneChar;
char someChar;

}

.
r r 1

Ox04 Ox08 OxO9OxOA

Size : Only 12 bytes

union someStruct{
int somelnt;
char* aPtr;
char oneChar;
char someChar;

—

Ox00 Ox04

Size : 4 bytes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 19

