

15-213 Recitation 7

Introduction to Computer
Systems

Fahim Dalvi
10 October, 2013

Today

● Cachelab

● Exam stuff

Cachelab

● Due: 21st, Monday after Eid

● Very different from the previous 3 homeworks

– Requires you to code for “real”
● Warnings are treated as errors

– For your own good
● Brush up on your C

– http://www.qatar.cmu.edu/~amtibaa/15-123/schedule.html

– Start from the “Intro to C Programming” lecture

http://www.qatar.cmu.edu/~amtibaa/15-123/schedule.html

Cachelab – Bird's Eye view

● Part (a)

– Cache Simulator
– A 200-300 line program

● Part (b)

– Optimizing matrix transpose

– All about performance!

Part (a) – Cache Simulator

● You will be implementing cache simulator

– A cache simulator is NOT a cache!
– Memory contents NOT stored!
– Simply counts hits, misses, and evictions

Part (a) – Cache Simulator

● You will be implementing cache simulator

– A cache simulator is NOT a cache!
– Memory contents NOT stored!
– Simply counts hits, misses, and evictions

Question: How will you use
the block offsets?

Part (a) – Cache Simulator

● Your cache simulator need to work for different s, b,
E, given at run time.

● Uses LRU replacement policy

● Will be tested on various “tracefiles”

Files - fscanf

● Include <stdio.h>
● File *my_fp=fopen(char * filename, char *mode)

– Mode = “r” read, “w” write, “w+” append→ → →

– Returns NULL if opening fails
● fscanf(fp,char *format, pointers to vars...

– Same format as printf

– Returns number of items scanned
● fclose(fp)

– Don't forget to do this when done with the file

Options - getopt

● Makes your life infinitely (maybe not) easier

– You don't HAVE to use it
● Your programs MUST use the same command line

arguments as the reference programs or the
autograder will not work

● Learn more about it:
– man 3 getopt

Part (b) – Optimizing Matrix Transpose

● Matrix transpose:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Matrix A Matrix B

Part (b) – Optimizing Matrix Transpose

● Matrix transpose:

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Matrix A Matrix B

Lets see what happens if the cache size is 8 bytes

Part (b) – Optimizing Matrix Transpose

● Access A[0][0] cache miss→

● Access B[0][0] cache miss→

● Access A[0][1] cache hit→

● Access B[1][0] cache miss→

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

Matrix A Matrix B

● After we handle 1 & 2,
Should we handle 3 & 4
first, or 5 & 6 first?

Part (b) – Optimizing Matrix Transpose

● What inspiration do you get from previous slide ?

– Divide matrix into sub-matrices
– This is called blocking
– Size of sub-matrix depends on

● cache block size, cache size, input matrix size
– Try different sub-matrix sizes

● We hope you invent more tricks to reduce the number
of misses !

Part (b) – Optimizing Matrix Transpose

● Cache:

– Directly mapped E=1→

– Block size is 32 bytes b = 5→

– There are 32 sets s = 5→

– Question: What is the size of the cache?
● Test Matrices:

– 32 by 32, 64 by 64 and 61 by 67

Questions?

● Feel free to ask on Piazza!

● Eid Mubarak :D

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

