

15-213 Recitation 8

Introduction to Computer
Systems

Fahim Dalvi
24 October, 2013

Today

● Control Flow
– Signals

● Unix I/O
● Shell lab

But first...

● Tarek is going to hold a workshop on control flow
– Will provide a lot of examples that will solidify

your ideas
– Will help you both in the lab and in the exams

“Process”

● An instance of an executing program
● Important characteristics

– Private memory Two processes do not share →
memory/registers

– Have a process ID and group ID
– On “dying”, every process is a zombie

● It must be reaped by someone
– Processes may share some things, like file tables

Important functions

● exit()
● fork()
● execvp()/execl()/execlp()/execle()/execv()/execve()
● waitpid()
● setpgid()

exit()

● Takes exactly one argument, an integer
● Immediately terminates the process that called it
● Sets 'return status' to the input argument
● Leaves a zombie to be reaped by the parent with

wait() or waitpid()

fork()

● Clones the current process
● Returns twice (one in the parent, one in the child)
● Return value in child is 0, child's pid in parent
● Returns -1 in case of failure

P1(pid=1149)

fork() P2(pid=1152) Child

Parent

Return value: 1152

Return value: 0

P1(pid=1149)

exec()

● execvp(char* filename, char** argv)

– Replaces current process with a new one
– Does not return (or returns -1 on failure)
– filename is the name of the program to run
– argv are like the command-line arguments to main

for the new process
● argv[0] is always the “command name”, actual
arguments start from argv[1] onwards.

Demo time!
#include <stdio.h>
#include <unistd.h>

int main()
{

pid_t result = fork();
printf("Print 1!\n");
if (result == 0)
{

char* cmd = "/bin/echo";
char* args[] = {cmd, "hello","world","from","child"};
execvp(cmd,args);
printf("Print 2!\n");

}
else
{

printf("Print 3!\n");
}
return 0;

}

waitpid()

● wait(pid_t pid, int* status, int options)
– Returns when the process specified by pid terminates
– pid must be a direct child of the invoking process
– If pid=-1, will wait for any child to die
– Writes information about child's status into status
– Options variable modifies its behavior
– options = WUNTRACED | WNOHANG
– Returns pid of the child it reaped
– Required by parent to kill zombies/free their resources

Reaping

P1

CP1 CP2

CP3

P1 can only reap
CP1/CP2, but not
CP3

setpgid()

● setpgid(pid_t pid, pit_t pgid)
– Sets the pgid of the given pid
– If pid=0, setpgid is applied to the calling process
– If pgid=0, setpgid uses pgid=pid of the calling

process
– Children inherit the pgid of their parents by default

Signals

● Basic communication between processes
● Sent several ways (kill command/function, ctrl-c, ctrl-z)
● Many have default behaviors

– SIGINT,SIGTERM will terminate the process
– SIGSTP will suspend the process until it receives SIGCONT
– SIGCHLD is sent from a child to its parent when the child

dies or is suspended
● Possible to ignore/catch most signals, but some can't

– SIGKILL is unstoppable SIGINT
– SIGSTOP is unstoppable SIGSTP

Blocked Signals

● Processes can choose to block signals using a signal
mask

● While a signal is blocked, a process will still receive
the signal but keep it pending
– No action will be taken until the signal is

unblocked
● Process will only track that it has received a blocked

signal, but not the number of times it was received

Signals – Important Functions

● kill()
● signal()
● sigprocmask()

kill()

● kill(pid_t id, int sig)
– If id positive, sends signal sig to process with

pid=id
– If id negative, sends signal sig to all processes with

with pgid=-id

signal()

● signal(int signum, sighandler_t handler)
– Specifies a handler function to run when signum is received
– sighandler_t means a function which takes in one int

argument and is void (returns nothing)
– When a signal is caught using the handler,its default

behavior is ignored
– The handler can interrupt the process at any time, even

while either it or another signal handler is running
– Control flow of the main program is restored once it's

finished running
– SIGKILL,SIGSTOP cannot be caught

sigprocmask()

● sigprocmask(int option, const sigset_t* set, sigset_t *oldSet)
– Updates the mask of blocked/unblocked signals using

the handler signal set
– Blocked signals are ignored until unblocked

● Process only tracks whether it has received a blocked
signal, not the count

● Getting SIGCHILD 20 times while blocked then
unblocking will only run its handler once

– option: SIG_BLOCK,SIG_UNBLOCK,SIG_SETMASK
– The 'set' can be modified using sigemptyset() and

sigaddset()

Race Conditions

● Race conditions occur when sequence or timing of
events are random or unknown

● Signal handlers will interrupt currently running code
● When forking, child or parent may run in different

order
● If something can go wrong, it will!

– Must reason carefully about the possible sequence
of events in concurrent programs

Demo time!
#include <stdio.h>
#include <signal.h>

int counter = 1;

void handler(int signum)
{
 counter--;
}

int main()
{
 signal(SIGALRM,handler);
 kill(0,SIGALRM);
 counter++;
 printf("%d\n",counter);
 return 0;
}

● What are the
possible outputs?

● What if we wanted
to guarantee that
the handler executed
after the print
statement?

● Heads up: You will
need to do this at
some point in shell
lab

Unix IO

● Each process maintains a table of its “open” files,
and references to them

● This table is copied over on forking
– Hence, files that are open in one process would

remain open in the forked process

Demo time!
int main()
{

int fd = open(“ab.txt”, O_RDONLY);
char c;
fork();
read(fd,&c,1); //Read one character from the file
printf(“%c\n”,c); //Print the character

}

● Assume the file ab.txt contains “ab”
● What's the output?
● What if the process forked before opening the
file?

Shell Lab

● Due: 4th November, Monday
● Requires you to implement a 'shell' aka what you see

when you login to the unix/shark machines
● Writeup has a page full of hints

– Read these very carefully to avoid wasted effort

Shell Lab

● There's a lot of starter code
– Look over it so you don't needlessly repeat work

● Use the reference shell to figure out the shell's behavior
– For instance, the format of the output when a job is

stopped
● Be careful of the add/remove job race condition

– Jobs should be removed from the list in the
SIGCHILD handler

– But what if the child ends so quickly, the parent
hasn't added it yet?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

