15-213 Recitation 8

Introduction to Computer

Systems

Fahim Dalvi
24 October, 2013

Today

e Control Flow
- Signals

e Unix I/0

e Shell lab

But first...

 Tarek is going to hold a workshop on control flow

- Will provide a lot of examples that will solidify
your ideas

— Will help you both in the lab and in the exams

“"Process”

* An instance of an executing program

 Important characteristics

Private memory — Two processes do not share
memory/registers

Have a process ID and group ID
On “dying”’, every process is a zombie

e It must be reaped by someone
Processes may share some things, like file tables

Important functions

exit()
fork()
execvp()
waitpid()
setpgid()

exit()

Takes exactly one argument, an integer
Immediately terminates the process that called it
Sets 'return status' to the input argument

Leaves a zombie to be reaped by the parent with
wait() or waitpid()

fork()

Clones the current process
Returns twice (one in the parent, one in the child)
Return value in child is 0, child's pid in parent

Returns -1 in case of failure

Return value: 0
Child

Parent
Return value: 1152

P1(pid=1149) P1(pid=1149)

e execvp(char* filename, char** argv)

Replaces current process with a new one
Does not return (or returns -1 on failure)
filename is the name of the program to run

argv are like the command-line arguments to main
for the new process

e argv[0] is always the “command name?’, actual
arguments start from argv[1] onwards.

Demo time!

#include <stdio.h>
#include <unistd.h>

int main()
{
pid_t result = fork();
printf("Print 1!'\n");
if (result == 0)
{
char* cmd = "/bin/echo";
char* args[] = {cmd, "hello","world","from","child"};
execvp(cmd,args);
printf("Print 2!'\n");
}

else

{
}

return 0;

printf("Print 3!'\n");

waitpid()

 wait(pid_t pid, int* status, int options)
Returns when the process specified by pid terminates
pid must be a direct child of the invoking process
If pid=-1, will wait for any child to die
Writes information about child's status into status
Options variable modifies its behavior
options = WUNTRACED | WNOHANG
Returns pid of the child it reaped
Required by parent to kill zombies/free their resources

Reaping

P1 can only reap
CP1/CP2, but not
CP3

setpgid()

* setpgid(pid_t pid, pit t pgid)
Sets the pgid of the given pid
If pid=0, setpgid is applied to the calling process

If pgid=0, setpgid uses pgid=pid of the calling
process

Children inherit the pgid of their parents by default

Signals

Basic communication between processes
Sent several ways (kill command/function, ctrl-c, ctrl-z)
Many have default behaviors

— SIGINT,SIGTERM will terminate the process
- SIGSTP will suspend the process until it receives SIGCONT

- SIGCHLD is sent from a child to its parent when the child
dies or is suspended

Possible to ignore/catch most signals, but some can't

- SIGKILL is unstoppable SIGINT
- SIGSTOP is unstoppable SIGSTP

Blocked Signals

* Processes can choose to block signals using a signal
mask

 While a signal is blocked, a process will still receive
the signal but keep it pending

- No action will be taken until the signal is
unblocked

* Process will only track that it has received a blocked
signal, but not the number of times it was received

Signals — Important Functions

o kill()
 signal()

 sigprocmask()

kill()

* kill(pid t id, int sig)
- If id positive, sends signal sig to process with
pid=id
- If id negative, sends signal sig to all processes with
with pgid=-id

* signal(int signum, sighandler t handler)

Specifies a handler function to run when signum is received

sighandler t means a function which takes in one int
argument and is void (returns nothing)

When a signal is caught using the handler,its default
behavior is ignored

The handler can interrupt the process at any time, even
while either it or another signal handler is running

Control flow of the main program is restored once it's
finished running

SIGKILL,SIGSTOP cannot be caught

sigprocmask()

* sigprocmask(int option, const sigset t* set, sigset t *oldSet)

Updates the mask of blocked/unblocked signals using
the handler signal set

Blocked signals are ignored until unblocked

* Process only tracks whether it has received a blocked
signal, not the count

o Getting SIGCHILD 20 times while blocked then
unblocking will only run its handler once

option: SIG_BLOCK,SIG_UNBLOCK,SIG_SETMASK

The 'set' can be modified using sigemptyset() and
sigaddset()

Race Conditions

Race conditions occur when sequence or timing of
events are random or unknown

Signal handlers will interrupt currently running code

When forking, child or parent may run in different

order
If something can go wrong, it will!

- Must reason carefully about the possible sequence
of events in concurrent programs

Demo time!

#include <stdio.h>
#include <signal.h>

int counter = 1;

void handler(int signum)

{

counter--;

}

int main()

{
signal(SIGALRM,handler);
kill(0,SIGALRM);
counter++;
printf("%d\n",counter);
return 0;

 What are the
possible outputs?

 What if we wanted
to guarantee that
the handler executed
after the print
statement?

* Heads up: You will
need to do this at

some point in shell
lab

Unix 1O

 Each process maintains a table of its “open?’ files,
and references to them

* This table is copied over on forking

- Hence, files that are open in one process would
remain open in the forked process

Demo time!

int main()

{
int fd = open(*“ab.txt”, O RDONLY);
char c;
fork();

read(fd,&c,1); //Read one character from the file
printf(“%c\n”,c); //Print the character

» Assume the file ab.txt contains “ab”’

* What's the output?

 What if the process forked before opening the
file?

Shell Lab

 Due: 4 November, Monday

* Requires you to implement a 'shell' aka what you see
when you login to the unix/shark machines

 Writeup has a page full of hints

- Read these very carefully to avoid wasted effort

Shell Lab

 There's a lot of starter code
- Look over it so you don't needlessly repeat work
» Use the reference shell to figure out the shell's behavior

- For instance, the format of the output when a job is
stopped

* Be careful of the add/remove job race condition

— Jobs should be removed from the list in the
SIGCHILD handler

- But what if the child ends so quickly, the parent
hasn't added it yet?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

