Course series: Deep Learning for Machine Translation

# Language Modeling 

## Lecture \# 2

Hassan Sajjad and Fahim Dalvi
Qatar Computing Research Institute, HBKU

## Recap: Automatic Translation

 System- Translation model
- learn word level and phrase level translation
- Language model
- fluency model
- learn to generate fluent translations
- Decoder
- translation generation component
- how to produce a translation from a trained translation model and language model


## Recap: Automatic Translation

## System

- Translation model
- learn word level and phrase level translation
- Language model
- fluency model
- learn to generate fluent translations
- Decoder
- translation generation component
- how to produce a translation from a trained translation model and language model


## Language Model

## You shall know a word by the company it keeps <br> —Firth, J. R. 1957:11

## Language Model

A few applications of language model

- Machine Translation
- he goes vs. he go


## Language Model

A few applications of language model

- Machine Translation
- he goes vs. he go
- Speech recognition
- speaker recognition vs. speak are cognition


## Language Model

A few applications of language model

- Machine Translation
- he goes vs. he go
- Speech recognition
- speaker recognition vs. speak are cognition
- Spell checking
- from vs.form


## Language Model

Fill in the blank:
... a


## Language Model

Fill in the blank:
... a
car and cat both work


## Language Model

Fill in the blank:


## Language Model

Fill in the blank:


## Language Model

Fill in the blank:
... a
car and cat both work

water
cat

## John is driving a

Similarly, machines use the context to predict the next words

## Language Model

You chose "driving a car" because you've seen that phrase more frequently
"driving a cat" is not a common phrase

## Language Model

Fill in the blank:
This ___ is going at 100 km/hours


## bicycle

Car at $100 \mathrm{~km} /$ hours is more probable than a bicycle

## Language Model

Language model defines
"how probable a sentence is"

## Language Model

Let's look at the example again

How probable is:
John is driving a car vs. John is driving a cat

In other words, what is the probability to predict cat or car given the context "John is driving a"

## Language Model

Calculate probability of a sequence of words using Chain Rule
$p($ John is driving a car $)=p(\mathrm{John}) \cdot p($ is $\mid \mathrm{John})$ $\cdot p$ (driving $\mid$ John is) $\cdot p(\mathrm{a} \mid \mathrm{John}$ is driving $)$ $\cdot p($ car $\mid$ John is driving a)

## Language Model

## But...

$p($ car $\mid$ John is driving a) vs. $p$ (car|driving a) vs. $p$ (car|a)

- long context is infrequent to find
- requires more memory to keep


## Ngram based LM

- Limit the context to fewer words

$$
p(\text { car } \mid \text { John is driving a) }
$$

remove words that
appear too far back
$p($ car|driving a)

## Ngram based LM

- Limit the context to fewer words

$$
p(\text { car } \mid \text { John is driving a }) \longrightarrow p(\text { car } \mid \text { driving a })
$$

Unigram: $p$ (car)
Bigram: $\quad p$ (car|a)
Trigram: $\quad p$ (car|driving a)

## Ngram based LM

Probability of a sequence with bigram context $p($ John is driving a car $)=p($ John $) \cdot p($ is $\mid$ John $)$
$\cdot p$ (driving $\mid$ John is)
$\cdot p(a \mid$ is driving $)$
$\cdot p($ car $\mid$ driving a)

## Ngram based LM

Probability of a sequence with bigram context $p($ John is driving a car $)=p($ John $) \cdot p($ is $\mid$ John $)$
$\cdot p($ driving $\mid$ John is)
$\cdot p(a \mid$ is driving $)$ - $p$ (car|driving a)

Formally, Ngram approximation of a sequence is given by:

$$
p\left(w_{1} w_{2} . . w_{n}\right)=\prod_{k=1}^{n} p\left(w_{k} \mid w_{k-N+1}^{k-1}\right)
$$

## Count-based LM

How do we estimate probabilities?

## Count-based LM

Estimate probabilities from a corpus

$$
\begin{aligned}
& p(\mathrm{John})=\frac{c(\mathrm{John})}{\text { Total number of tokens in corpus }} \\
& p(\mathrm{is} \mid \mathrm{John})=\frac{c(\mathrm{John} \mathrm{is})}{c(\mathrm{John})}
\end{aligned}
$$

where c stands for count

## Count-based LM - Example

## Corpus

<s> I am Sam </s>
<s> Sam likes tea </s>
<s> Dan does not like green eggs and ham </s>
<s> Sam eats ham </s>
<s> Dan likes cats </s>
<s> tea and biscuits go together </s>
<s> a pack of biscuits </s>

## Count-based LM - Example

## Corpus

<s> I am Sam </s>
<s> Sam likes tea </s>
<s> Dan does not like green eggs and ham </s>
<s> Sam eats ham </s>
<s> Dan likes cats </s>
<s> tea and biscuits go together </s>
<s> a pack of biscuits </s>

| and | 2 | not | 1 |
| :--- | :---: | :--- | :---: |
| tea | 2 | a | 1 |
| am | 1 | like | 1 |
| likes | 2 | Sam | 3 |
| go | 1 | of | 1 |
| </s> | 7 | eats | 1 |
| ham | 2 | together | 1 |
| <s> | 7 | green | 1 |
| Dan | 2 | cats | 1 |
| does | 1 | biscuits | 2 |
| l | 1 | pack | 1 |
| eggs | 1 |  |  |

## Count-based LM - Example

## Corpus

<s> I am Sam </s>
<s> Sam likes tea </s>
<s> Dan does not like green eggs and ham </s>
<s> Sam eats ham </s>
<s> Dan likes cats </s>
<s> tea and biscuits go together </s>
<s> a pack of biscuits </s>

| <s> a | 1 | and biscuits | 1 |
| :--- | :--- | :--- | :--- |
| likes cats | 1 | Sam </s> | 1 |
| eggs and | 1 | cats </s> | 1 |
| ham </s> | 2 | <s> tea | 1 |
| Dan likes | 1 | and ham | 1 |
| a pack | 1 | likes tea | 1 |
| go together | 1 | does not | 1 |
| biscuits go | 1 | I am | 1 |
| tea and | 1 | green eggs | 1 |
| like green | 1 | Sam eats | 1 |
| Dan does | 1 | not like | 1 |
| of biscuits | 1 | together </s> | 1 |
| <s> l | 1 | Sam likes | 1 |
| biscuits </s> | 1 | <s> Sam | 2 |
| pack of | 1 | eats ham | 1 |
| am Sam | 1 | <s> Dan | 2 |
| tea </s> | 1 |  |  |

## Count-based LM - Example

Calculate bigram probabilities

$$
p\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

Unigram Counts
Bigram Counts

| and | 2 | not | 1 |
| :--- | :---: | :--- | :---: |
| tea | 2 | a | 1 |
| am | 1 | like | 1 |
| likes | 2 | Sam | 3 |
| go | 1 | of | 1 |
| $</ s>$ | 7 | eats | 1 |
| ham | 2 | together | 1 |
| <s> | 7 | green | 1 |
| Dan | 2 | cats | 1 |
| does | 1 | biscuits | 2 |
| l | 1 | pack | 1 |
| eggs | 1 |  |  |

$$
p\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)}{c\left(w_{i-1}\right)}
$$

| <s> a | 1 | and biscuits | 1 |
| :--- | :--- | :--- | :--- |
| likes cats | 1 | Sam </s> | 1 |
| eggs and | 1 | cats </s> | 1 |
| ham </s> | 2 | <s> tea | 1 |
| Dan likes | 1 | and ham | 1 |
| a pack | 1 | likes tea | 1 |
| go together | 1 | does not | 1 |
| biscuits go | 1 | I am | 1 |
| tea and | 1 | green eggs | 1 |
| like green | 1 | Sam eats | 1 |
| Dan does | 1 | not like | 1 |
| of biscuits | 1 | together </s> | 1 |
| <s> I | 1 | Sam likes | 1 |
| biscuits </s> | 1 | <s> Sam | 2 |
| pack of | 1 | eats ham | 1 |
| am Sam | 1 | <s> Dan | 2 |
| tea </s> | 1 |  |  |

## Count-based LM - Example

Calculate probability of a sentence $p(\langle\mathrm{~s}\rangle$ Dan likes tea </s>)

## Count-based LM - Example

Calculate probability of a sentence

$$
\begin{aligned}
p(\langle\mathrm{~s}\rangle & \text { Dan likes tea }\langle/ \mathrm{s}\rangle)=\frac{c(\langle\mathrm{~s}\rangle \text { Dan })}{c(\langle\mathrm{~s}\rangle)} \\
& \cdot \frac{c(\text { Dan likes })}{c(\text { Dan })} \cdot \frac{c(\text { likes tea })}{c(\text { likes })} \cdot \frac{c(\text { tea }\langle/ \mathrm{s}\rangle)}{c(\text { tea })}
\end{aligned}
$$

## Count-based LM - Example

Calculate probability of a sentence

$$
\begin{aligned}
p(\langle\mathrm{~s}\rangle & \text { Dan likes tea }\langle/ \mathrm{s}\rangle)=\frac{c(\langle\mathrm{~s}\rangle \text { Dan })}{c(\langle\mathrm{~s}\rangle)} \\
& \cdot \frac{c(\text { Dan likes })}{c(\text { Dan })} \cdot \frac{c(\text { likes tea })}{c(\text { likes })} \cdot \frac{c(\text { tea }\langle/ \mathrm{s}\rangle)}{c(\text { tea })} \\
& =0.286 \times 0.5 \times 0.5 \times 0.5 \\
& 0.036
\end{aligned}
$$

## Count-based LM - Example

Calculate probability of a sentence

$p($ s $>$ Dan likes tea and biscuits </s>)

## Count-based LM - Example

Calculate probability of a sentence

$$
\begin{aligned}
p(\langle\mathrm{~s}\rangle & \text { Dan likes tea and biscuits }\langle/ \mathrm{s}\rangle) \\
& =0.286 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \\
& =0.0089
\end{aligned}
$$

## Unknown Words/Sequences

$$
p(\langle\mathrm{~s}\rangle \text { Dan likes ham }\langle/ \mathrm{s}\rangle)=\frac{c(\langle\mathrm{~s}\rangle \text { Dan })}{c(\langle\mathrm{~s}\rangle)}
$$

$$
\cdot \frac{c(\text { Dan likes })}{c(\text { Dan })} \cdot \frac{c(\text { likes ham })}{c(\text { likes })} \cdot \frac{c(\text { ham }</ \mathrm{s}>)}{c(\text { ham })}
$$

## Unknown Words/Sequences

$p(\langle\mathrm{~s}\rangle$ Dan likes ham $\langle/ \mathrm{s}\rangle)=\frac{c(\langle\mathrm{~s}\rangle \text { Dan })}{c(\langle\mathrm{~s}\rangle)}$
$\cdot \frac{c(\text { Dan likes })}{c(\text { Dan })} \cdot \frac{c(\text { likes ham })}{\text { Unknown }} \cdot \frac{c(\text { ham }</ \mathrm{s}\rangle)}{c(\text { ham })}$
probability of unknown is zero probability of the entire sentence becomes zero!

## Intuition of Smoothing

- Steal probability mass from known words
- Assign it to unknown words


## Intuition of Smoothing

Sparse statistics:
3 allegations, 2 reports, 1 claims, 1 request
7 total


## Intuition of Smoothing

Sparse statistics:
3 allegations, 2 reports, 1 claims, 1 request

7 total


Steal probability mass to generalize better
2.5 allegations, 1.5 reports, 0.5 claims, 0.5 request, 2 other
7 total


## Intuition of Smoothing

Sparse statistics:
3 allegations, 2 reports, 1 claims, 1 request
7 total


Steal probability mass to generalize better
2.5 allegations, 1.5 reports, 0.5 claims, 0.5 request, 2 other
7 total
Now we have count of 2 additional words that we can split into unknown
 words

## Add-one (Laplace) Smoothing

- Add one to all counts!
- assume we saw each word in corpus one more time
- then we saw unseen words once in the corpus


## Smoothing of unigrams

$$
p\left(w_{i}\right)=\frac{c\left(w_{i}\right)+1}{N+V}
$$

Here $V$ is the total number of unique words in our corpus
$N$ is total number of words in our corpus

## Add-one (Laplace) Smoothing

- Add one to all counts!
- assume we saw each word in corpus one more time
- then we saw unseen words once in the corpus

Smoothing of bigrams

$$
p\left(w_{i} \mid w_{i-1}\right)=\frac{c\left(w_{i-1}, w_{i}\right)+1}{c\left(w_{i-1}\right)+V}
$$

Here $V$ is the total number of unique words in our corpus

## Add-one (Laplace) Smoothing

## Smoothing of Ngrams

$$
p\left(w_{n} \mid w_{n-N+1}^{n-1}\right)=\frac{c\left(w_{n-N+1}^{n-1}, w_{n}\right)+1}{c\left(w_{n-N+1}^{n-1}\right)+V}
$$

Here $V$ is the total number of possible ( $\mathrm{N}-1$ ) grams

## Smoothing

Several smoothing methods,

- Kneser-Ney
- Good Turing


## Evaluating LM

- Does our LM give higher score to good sentences compared to bad sentences?
- frequently observed vs. rare sentences

| Train | the corpus used to build LM |
| :---: | :---: |
| Test | unseen data to see LM performance |
| Evaluate | scoring metric to evaluate LM |

## Evaluating LM

- Does our LM give higher score to good sentences compared to bad sentences?
- frequently observed vs. rare sentences


Why do we need unseen data to test?

## Evaluating LM

## Test

Development
unseen data to see LM performance
unseen data to tune LM performance

Test set contains examples that will come from the real world. We assume that we don't have a test while training a model

## Evaluating LM

## Test

Development
unseen data to see LM performance
unseen data to tune LM performance

Hold out a few examples from your training set to test your LM!

## Evaluating LM

How good is the LM in scoring a test set?

- Extrinsic evaluation
- use LM in another application, such as machine translation and observe the performance improvement
- expensive
- Intrinsic evaluation
- test the quality of LM on unseen data
- perplexity


## Evaluation: Perplexity

How good is the LM in scoring a test set?

Perplexity is the inverse probability of the test set, normalized by total number of words

$$
\operatorname{ppl}(\mathrm{s})=\mathrm{p}\left(\mathrm{w}_{1} \mathrm{w}_{2} \ldots \mathrm{w}_{\mathrm{N}}\right)^{-1 / \mathrm{N}}
$$

- higher the probability, lower the perplexity
- lower is better


## LM closing remarks

Language models can learn different styles

- formal
- informal (spoken, sms, chat)

So if we have multiple LMs, how do you know which one to use?

- check perplexity on a dev set
- an LM built on formal sentences would have lower ppl on formal corpus than informal


## Python \& Numpy

[See accompanying notebook]

## iPython/Jupyter notebook Installation

https://www.anaconda.com/download/\#download or
http://jupyter.readthedocs.io/en/latest/install.html

