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Machine Learning

A technique that gives machines the ability to 
learn, without any explicit programming



Machine Learning

In simpler terms, a machine should be able to see 
some data, and learn to make decisions based 

on what it has seen



Machine Learning
An example: You are a car dealer, and you have a historical 
record of which cars are accident prone. How can you “teach” 
a computer to predict which new cars will be accident prone?

Maximum Speed Acceleration Color Car age Accident Prone?

Car 1 240 km/h Fast Red 2 yrs Yes

Car 2 100 km/h Fast Yellow 2 yrs No

Car 3 240 km/h Fast Blue 1 yr No

Car 4 200 km/h Slow Blue 5 yrs Yes

Car 5 100 km/h Fast Yellow 5 yrs Yes

Car 6 100 km/h Slow Black 6 yrs No

Car 7 150 km/h Fast Red 2 yrs ?



Machine Learning

How did you make your decision?

Search for closest vehicle in the past?

Come up with a set of rules?

How did you decide what knowledge is important?



Machine Learning

Historically, rule based systems were common:

if (car.acceleration = fast and car.age > 1 and ...)

    print (“accident prone”)

else if (car.acceleration = slow and car.maxspeed > 150 and ...)

    print (“accident prone”)

else if (car.acceleration = slow and car.maxspeed < 50)

    print (“not accident prone”)

else if

 ...

 ...

Domain Specific Cumbersome Not easy to learn from new data



Training data

Then, machine learning techniques came about...

Machine Learning

Domain Agnostic Robust Easy to learn from new data

... Accident 
Prone?

Car 1 ... Yes

Car 2 ... No

Car 3 ... No

Car 4 ... Yes

Car 5 ... Yes

Car 6 ... No
Machine Learning

Algorithms
“Model”



Training Data

Maximum Speed Acceleration Color Car age Accident Prone?

Car 1 240 km/h Fast Red 2 yrs Yes

Car 2 100 km/h Fast Yellow 2 yrs No

Car 3 240 km/h Fast Blue 1 yr No

Car 4 200 km/h Slow Red 5 yrs Yes

Car 5 100 km/h Fast Yellow 5 yrs Yes

Car 6 100 km/h Slow Black 6 yrs No

Input Features Labels

We use training examples with labels to train a model



Training data

Then, machine learning techniques came about...

Machine Learning

Domain Agnostic Robust Easy to learn from new data

... Accident 
Prone?

Car 1 ... Yes

Car 2 ... No

Car 3 ... No

Car 4 ... Yes

Car 5 ... Yes

Car 6 ... No
Machine Learning

Algorithms
“Model”



In this case, we have labels for each car. This class 
of problems is handled by supervised learning 
algorithms.

Unsupervised learning algorithms work on 
unlabelled data

Algorithms



In this case, we have labels for each car. This class 
of problems is handled by supervised learning 
algorithms.

Unsupervised learning algorithms work on 
unlabelled data

Algorithms



In this case, we have labels for each car. This class 
of problems is handled by supervised learning 
algorithms.
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Many techniques exist to build models:
• “Finding similar cars” type methods:

– K-means clustering
– Hierarchical clustering

• “Create set of rules” type methods:
– Support vector machines 
– Logistic Regression
– Neural Networks

Algorithms



Many techniques exist to build models:
• “Finding similar cars” type methods:

– K-means clustering
– Hierarchical clustering

• “Create set of rules” type methods:
– Support vector machines 
– Logistic Regression
– Neural Networks

Algorithms

Supervised

Unsupervised



Training data

Then, machine learning techniques came about...

Machine Learning

Domain Agnostic Robust Easy to learn from new data

... Accident 
Prone?

Car 1 ... Yes

Car 2 ... No

Car 3 ... No

Car 4 ... Yes

Car 5 ... Yes

Car 6 ... No
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“Model”



f(           ) = No

f(         ) = Yes

Machine Learning Model

Example of a model: A function that takes 
information about a car, and predicts whether it’s 
accident prone or not



Machine Learning Model

Example of a model: A function that takes a word, 
and predicts it’s part of speech tag

f(“car”) = Noun

f(“beautiful”) = Adjective

f(“she”) = Pronoun



Machine Learning Model

At a high level, the basic idea is to figure out which 
features are important, and how important are they for 
prediction

  0.3 x car.maxspeed 
+ 0.2 x car.acceleration 
+ 0.0 x car.color
+ 0.5 x car.age



Machine Learning Model

  0.3 x car.maxspeed 
+ 0.2 x car.acceleration 
+ 0.0 x car.color
+ 0.5 x car.age

An older car is more likely to be accident prone

At a high level, the basic idea is to figure out which 
features are important, and how important are they for 
prediction



  0.3 x car.maxspeed 
+ 0.2 x car.acceleration 
+ 0.0 x car.color
+ 0.5 x car.age

The color of a car has no impact on accidents

At a high level, the basic idea is to figure out which 
features are important, and how important are they for 
prediction

Machine Learning Model



Supervised Learning: Classification

Process of assigning objects to categories

For example, Car 1 belongs to category “Accident Prone”

Maximum Speed Acceleration Color Car age Accident Prone?

Car 1 240 km/h Fast Red 2 yrs Yes

Car 2 100 km/h Fast Yellow 2 yrs No

Car 3 240 km/h Fast Blue 1 yr No

Car 4 200 km/h Slow Blue 5 yrs Yes

Car 5 100 km/h Fast Yellow 5 yrs Yes

Car 6 100 km/h Slow Black 6 yrs No



Supervised Learning: Classification

Accident Prone

Not Accident Prone Pronoun Adjective

Noun Verb

Car Example POS Example

Binary Classification Multiclass Classification

Process of assigning objects to categories



Supervised Learning: Classification

Process of assigning objects to categories

Accident Prone

Not Accident Prone Pronoun Adjective

Noun Verb

Car Example POS Example

Binary Classification Multiclass Classification

Two classes: yes or no More than two classes to 
choose from



Classification: Vector Spaces

Speed

A
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Age

Imagine every feature as a dimension in space
Every object (car) can be represented as a point in space



Classification: Vector Spaces

Table
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Ingredients of a Classifier

Objective Function

Loss Function

Optimization 
FunctionInput data

Parameters



• We will start by looking at a simple technique - 
Linear regression for binary classification

Classification Exercise



• We will start by looking at a simple technique - 
Linear regression for binary classification

• In Linear regression, our model/function predicts 
just one real number

• If this number is < 0, we will consider it to belong 
to Class 1. If it is ≥ 0, we will consider it to 
belong to Class 2.

Classification Exercise



• Choose      ,       and     such that positive 
examples give a result > 0 and negative 
examples give a result < 0

Classification Exercise

Class

2 0 Positive

5 -2 Positive

-2 2 Negative

-1 -3 Negative



• Choose      ,       and     such that positive 
examples give a result > 0 and negative 
examples give a result < 0

Classification Exercise

Class

2 0 Positive

5 -2 Positive

-2 2 Negative

-1 -3 Negative

  0.3 x car.maxspeed 
+ 0.2 x car.acceleration 
+ 0.0 x car.color
+ 0.5 x car.age



• Choose      ,       and     such that positive 
examples give a result > 0 and negative 
examples give a result < 0

Classification Exercise

Class

2 0 Positive

5 -2 Positive

-2 2 Negative

-1 -3 Negative



Find weights that separate positive examples from 
negative examples

Classification Exercise

x0

x1



• Potential Solution:       = 3,       = 1 and b = 3

Classification Exercise

x0

x1



• Potential Solution:       = 3,       = 1 and b = 3

Classification Exercise

x0

x1

defines one such decision boundary

Positive examples will be on one side of the boundary, and negative 
examples on the other

should define a decision boundary



• Potential Solution:       = 3,       = 1 and b = 3

Classification Exercise

x0

x1

b

0
-1
-2

0
3

-3



Ingredients of a Classifier

Objective Function

Loss Function

Optimization 
FunctionInput data

Parameters



Objective function defines our goal

Objective Function

f(           , W, b) = 2 Numbers

Input Parameters
P

Outputs
The scores for the two 

classes - accident 
prone and not 
accident prone



Objective function defines our goal

Objective Function

f(           , W, b) = 2 Numbers

Input Parameters
P

Outputs
The scores for the two 

classes - accident 
prone and not 
accident prone

Can also be just one 
number as in the case of 
Linear regression, but in 
general for classification, 
we have n numbers if we 
want to classify between n 
classes



Objective Function

f(           , W, b) = 2 Numbers

Input Parameters
P

Outputs
The scores for the two 

classes - accident 
prone and not 
accident proneLearned by the algorithm, just like you learned W 

and b in the previous exercise!

Objective function defines our goal



Ingredients of a Classifier

Objective Function

Loss Function

Optimization 
FunctionInput data

Parameters



Given a set of parameters P={P
1
,P

2
,…}, how do 

you know which one to use?

Loss Function
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Given a set of parameters P={P
1
,P

2
,…}, how do 

you know which one to use?

Loss Function

x0

x1

P1

P2

P3

P
1
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We use the concept of loss
A loss function takes in the output of our model, 
compares it to the true value and then gives us a 

measure of how “far” our model is.



Consider two cars and three sets of parameters

 

Which set of parameters is the best?

f(           , P
1
) = [0.5, 0.5]          f(         , P

1
) = [0.1, 0.9]

f(           , P
2
) = [0.7, 0.3]          f(         , P

2
) = [0.3, 0.7]

f(           , P
3
) = [0.1, 0.9]          f(         , P

3
) = [0.9, 0.1]

Loss Function Exercise

Not accident prone Accident prone

P
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A loss function is any function that gives a measure 
of how far your scores are from their true values

Loss Function



A loss function is any function that gives a measure 
of how far your scores are from their true values

Loss Function

Not accident prone Accident prone

[1.0, 0.0] [0.0, 1.0]← True values →



Loss Function

A potential loss function in this case is the sum of 
the absolute difference of scores:

        L(           , P
1
) = sum(f(           , P

1
) - [1.0, 0.0] )

                        
 
  = sum([ |-0.5| , |0.5| ]) = 1

        L(           , P
1
) = sum(f(           , P

1
) - [0.0, 1.0]) 

                        
 
  = sum([ |0.1|, |-0.1| ]) = 0.2
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Loss Function

Average loss for both cars

L(P
1
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A potential loss function in this case is the sum of 
the absolute difference of scores:

        L(           , P
1
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1
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  = sum([ |0.1|, |-0.1| ]) = 0.2

     L(           , P
2
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Loss Function
Average loss for both cars

L(P
1
) = 0.6    L(P

2
) = 0.6     L(P

3
) = 1.8

A lower value of the loss indicates a better model

i.e. we are closer to the true values

In this case, P
1
 and P

2
 have the lower value of 0.6, so we know they are better 

than P
3
. However, we also know that P

2
 is better than P

1
 , and this implies our 

loss function is not very good right now!



Better loss function:

Loss is equal to the sum of the square of the 
differences in the scores

     

Loss Function

Mean Squared Error
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Better loss function:

Loss is equal to the sum of the square of the 
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Better loss function:

Loss is equal to the sum of the square of the 
differences in the scores

       MSE(           , P
1
) = 0.50      MSE(         , P

1
) = 0.02

       MSE(           , P
2
) = 0.18      MSE(         , P

2
) = 0.18

       MSE(           , P
3
) = 1.62      MSE(         , P

3
) = 1.62

Loss Function

Average loss

L(P
1
) = 0.26    L(P

2
) = 0.18     L(P

3
) = 1.62

Mean Squared Error



Mean Squared Error works better, as it penalizes 
values that are further away more.

Loss Function



Many other choices for loss functions:
• Absolute Distance loss
• Hinge loss
• Logistic loss
• Cross Entropy loss

                 ⋮

Loss Function



Loss function is also known as the cost function in 
some literature

Loss Function



Ingredients of a Classifier

Objective Function

Loss Function

Optimization 
FunctionInput data

Parameters



Optimization

Now that we have a way of defining loss, we need 
a way to use it to improve our parameters

This process is called optimization - where our 
goal is to “minimize” the loss function, i.e. bring it 
as close to zero as possible



Optimization Exercise

x + 5 = ?

Higher Lower

Very far Far Close Very close

Find the value of x in the following equation:

For every guess you will get the following hints:

Direction:

Error:



Optimization Example
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Optimization Example

45
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Just like you did the exercise of updating x based 
on our feedback, machines can also look at the 
loss (“Higher”, “Very far”) and decide to update 

x appropriately



Optimization Example

45

15
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55
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Optimization algorithms use the loss value to 
mathematically nudge the parameters P of the 

objective function to be more “correct”



What are some strategies you used to optimize x?

Optimization



• Potential Solution: Guess randomly each time
• Pros:

– Very simple
• Cons:

– Not very efficient
– loss value is unused
– Potentially may never find a good solution

Optimization: Random Search



• Better Solution: Gradient based search

Optimization: Gradient Search



• Better Solution: Gradient based search
• Every function can be represented in space:

Optimization: Gradient Search



• Better Solution: Gradient based search
• Every function can be represented in space:

Optimization: Gradient Search

Any loss function can also be represented in 
space



• Better Solution: Gradient based search
• Our goal is to minimize the loss, i.e. find a set of 

parameters P such that the loss is close to zero

Optimization: Gradient Search



• Better Solution: Gradient based search
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• Better Solution: Gradient based search
• Our goal is to minimize the loss, i.e. find a set of 

parameters P such that the loss is close to zero

Optimization: Gradient Search

Minimum value of the function



Functions are just like terrain - they have  
mountains and valleys

We want to minimize loss, 

i.e. go to the bottom of the terrain

Optimization: Gradient Search



Q: Imagine you are blindfolded on a mountain, how 
will you go to the bottom?

Optimization: Gradient Search



Q: Imagine you are blindfolded on a mountain, how 
will you go to the bottom?

A: Sense the slope around you, and move in the 
direction where the slope points downwards

Optimization: Gradient Search



Concept of gradient == “your sense of slope” for 
the loss function

The gradient of a function is mathematically 
defined as the slope of the tangent i.e. slope at any 

given point on the function

Optimization: Gradient Search



Optimization: Gradient Search

Tangent at x = 0.8
Slope = 1.6

Tangent at x = 1.5
Slope = 3.0



Once we know the direction, we can move towards 
the minimum.

Are we done?

Optimization: Gradient Search



How far should we move?

The step size or learning rate defines how big a step 
we should take in the direction of the gradient

Optimization: Learning Rate



How far should we move?

The step size or learning rate defines how big a step 
we should take in the direction of the gradient

It must be well controlled - too small a step and it 
may take a long time to reach the bottom - too big 
a step and we may miss the minimum all together!

Optimization: Learning Rate



Various optimization algorithms

Optimization

Alec Radford (Reddit)

https://www.reddit.com/r/MachineLearning/comments/2gopfa/visualizing_gradient_optimization_techniques/cklhott/


Local Minima

Minimum value of the function Local minimum value of the function



Local Minima

Minimum value of the function Local minimum value of the function

Optimization algorithm may get “stuck” at 
local minimum of a function



Let’s look at an actual optimization in real time!

Optimization: Demo



Ingredients of a Classifier

Objective Function

Loss Function

Optimization 
FunctionInput data

Parameters



• What was the “b”?
– A parameter that allows you to “shift” your 

decision boundary
– In the case of a linear boundary (f = Wx + b), 

the W can only control the slope of the 
boundary - but that may not be enough

Bias



Consider the following dataset:

Bias

x0

x1



Consider the following dataset:

Bias

x0

x1

Without a bias term, the decision boundary must pass 
through the origin



Consider the following dataset:

Bias

x0

x1



Consider the following dataset:

Bias

x0

x1

No decision boundary passing through the origin can lead to 
a good model here



Consider the following dataset:

Bias

x0

x1

Introduction of a bias terms helps us shift the boundary 
and fit the data



• We’ve learned that we need to move in the 
direction of the gradient to reach the minimum 
value for a given loss function

• But where do we start?

Parameter Initialization



• Initial values of W and b dictate where in the 
terrain we begin

• If we start near a minima, we can optimize very 
quickly - If we start too far, it may take a long 
time to find a good model

• We may even start near a local minimum and 
never find the global minimum for a given 
function

Parameter Initialization



• Zero initialization?
• Random initialization?
• Something more complicated?

Parameter Initialization



• Zero initialization
• Random initialization
• Something more complicated:

– Gaussian distributed
– Xavier Initialization

More on this later!

Parameter Initialization



As we’ve seen, there are many potential solutions 
to a problem:

Regularization



As we’ve seen, there are many potential solutions 
to a problem:

Which set of parameters is better here?

Regularization

P
1
:

P
2
:

P
3
:



Some loss functions are sensitive to the magnitude 
of weights:

Regularization

Average losses (MSE)

L(P
1
) = 73.25    L(P

2
) = 866051.0     L(P

3
) = 867304.75



Some loss functions are sensitive to the magnitude 
of weights:

Regularization

Average losses (MSE)

L(P
1
) = 73.25    L(P

2
) = 866051.0     L(P

3
) = 867304.75

But all three represent 
almost exactly the same 

boundary!

P
1 P

2

P
3



Some loss functions are sensitive to the magnitude 
of weights:

Regularization

Average losses (MSE)

L(P
1
) = 73.25    L(P

2
) = 866051.0     L(P

3
) = 867304.75

P
1 P

2

P
3

Loss is different for each set 
of parameters, even though 

conceptually they are all 
equally good



Solution: Since all these solutions are equally good, 
constrain our model to weights with small 
magnitude

Regularization



Solution: Since all these solutions are equally good, 
constrain our model to weights with small 
magnitude

Regularization

Penalizes weights that are too large
λ defines how much importance you 

want to give to regularization



Summary

• Classification - supervised vs. unsupervised
• Linear regression
• Objective function
• Loss function

– sum of absolute differences
– mean squared error

• Optimization
– random search
– gradient search


