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Optimization

• Recall from Lecture 3: 
– For every training example, we compute a loss
– We then use the loss to adjust the parameters
– Updated parameters should result in a lower loss

• We “adjust” by moving in the direction of the slope of 
the function



Optimization

• How can we compute the slope of the function?
– Compute gradients analytically
– Backpropagation



Let us consider the linear classifier and Mean 
Squared Error from last lecture:

Optimization

Objective Function

Loss Function



Partial Derivative Rules



Let us compute the gradient of MSE analytically
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Let us compute the gradient of MSE analytically

Optimization



But what if the function was slightly more 
complicated:

Optimization



But what if the function was slightly more 
complicated:

Optimization

Analytical gradients become much more 
complicated and tedious to compute!



But what if the function was slightly more 
complicated:

Optimization

Backpropagation to the rescue!



Backpropagation

Backpropagation is a technique to compute 
gradients of any function with respect to a variable 

using the concept of a computation graph



Computation graph: Graphical way of describing 
any function:

Backpropagation
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Backpropagation

We can now use the chain rule to compute the gradient, and 
work our way backwards from the output to the inputs!
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Backpropagation

We can now use the chain rule to compute the gradient, and 
work our way backwards from the output to the inputs!



To complete the picture, we can then use the 
gradients to update the parameters using gradient 
descent
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Recall: We want to take a “step” in the direction of 
the slope

Optimization



To complete the picture, we can then use the 
gradients to update the parameters using gradient 
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To complete the picture, we can then use the 
gradients to update the parameters using gradient 
descent

Optimization

Step size
Learning rate



Optimization Exercise

Let’s see a linear classifier in code!
1. Data setup
2. Defining objective and loss functions
3. Implementing gradient functions
4. Optimization
5. Bonus: Plotting results



Optimization Exercise

Data setup

• Usually data is loaded from an external source
• Eventually, all data is represented in some structured 

form like in matrices
• Data for supervised learning is normally composed of 

the actual data points and the labels for each point



Optimization Exercise

Defining objective and loss functions

• In this case, fn is the objective function for a linear 
classifier

• loss computes mean squared error



Optimization Exercise

Implementing gradient functions

• We care about the gradient of the loss function with 
respect to each of our trainable parameters, i.e        ,    
and 

• Gradients can be computed analytically or using the 
computation graph as we’ve seen before - only the final 
form is important



Optimization Exercise

Implementing gradient functions

• We care about the gradient of the loss function with 
respect to each of our trainable parameters, i.e        ,    
and 

• Gradients can be computed analytically or using the 
computation graph as we’ve seen before - only the final 
form is important



Optimization Exercise

Optimization

Parameter Initialization



Optimization Exercise

Optimization

Optional: Maintain history so you 
can plot progress later



Optimization Exercise

Optimization

Parameter initialization for 
optimization algorithm. 
Here we are going to use SGD, so 
there is only one parameter to 
set: learning rate



Optimization Exercise

Optimization

Main optimization loop
We will pass over the data 
(# epochs) 20 times in this case



Optimization Exercise

Optimization

Compute average loss over the 
entire dataset.
This number should go down as 
we train - it’s a measure of how 
good our model is.



Optimization Exercise

Optimization

Iterate over each data point. We 
compute the loss and gradients 
for each example, and nudge our 
weights appropriately



Optimization Exercise

Optimization

Iterate over each data point. We 
compute the loss and gradients 
for each example, and nudge our 
weights appropriately



Optimization Exercise

Optimization

Optional: Update history



Optimization Exercise

Prediction

Once we have optimized for w and b, we can just use fn to compute 
predictions for any data points! 



Optimization Exercise

Bonus: Plotting

Plot data points



Optimization Exercise

Bonus: Plotting

Plot decision boundary



Optimization Exercise

Bonus: Plotting



Optimization Exercise

Let’s put it all together and see it in action
1. Analytical gradient
2. Backproped gradient
3. Overall optimization



Example #2: Consider the linear classifier and Hinge 
loss:

Optimization Exercise

Objective Function

Loss Function



Derive the gradients        ,       and      :
 

1. Use derivation rules to derive the gradients analytically
2. Build the computation graph to use backpropagation

Exercise



Hinge Loss



Hinge Loss



Analytical gradients:

Hinge Loss



Now implement the optimization in code!

Exercise
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Practical Considerations

Multiclass classification



Multiclass Classification

Recall that we have been using linear regression so 
far and making decisions based on the sign of the 
output

f(           , W, b) = 1 Real Number

Output
If the number is less 
than 0, it is accident 
prone, else it is not 

accident prone



Multiclass Classification

In general, we design our function f such that we 
output one number per class:

Outputs
The scores for the two 

classes - accident 
prone and not 
accident prone

f(           , W, b) = 2 Numbers



Multiclass Classification

In regression:

In classification:

Output: A real number

Output: A vector



Multiclass Classification

In regression:

In classification:

Output: A real number

Output: A vector

Matrix Vector

Vector Real
number



Multiclass Classification

From now on, we will use this generalized 
technique, since it can be easily extended to more 
than two classes

Outputs
The scores for the 

classes

f(           , W, b) = Numbers



Multiclass Classification

From now on, we will use this generalized 
technique, since it can be easily extended to more 
than two classes

Everything else remains the same - the loss 
functions now operates on vectors instead of real 
numbers

f(           , W, b) = Numbers
(vector)



In regression:

In classification:

Multiclass Classification
Prediction

f(          , W, b) >= 0

argmax(f(          , W, b))

Pick the class with the 
highest score



Practical Considerations

Stochastic vs Batch 
gradient descent



Gradient Descent

In the previous implementation, we compute the 
objective function and gradient for an example, 
adjusted our parameters and then continued with 
the next example



Gradient Descent

In the previous implementation, we compute the 
objective function and gradient for an example, 
adjusted our parameters and then continued with 
the next example

This approach is known as stochastic gradient 
descent (SGD)



Gradient Descent

Another approach is to accumulate the gradients 
over all examples, and then do a single update to 
the parameters - this approach is known as Batch 
gradient descent



Gradient Descent

Batch gradient descent leads to more “stable” 
updates - the direction towards the optimal 
parameters is computed after looking at all 
examples, instead of just one!



Gradient Descent

What if you had a few outliers (bad examples) 

- SGD will cause the parameters to drift farther 
from their optimal values when the update loop 
goes over these outliers

- Batch GD will drown out the effect of the 
outliers since there are many more good 
examples



Gradient Descent

But...

- Batch GD requires us to look over the entire 
dataset before making any progress - so it’s 
much slower

- The entire dataset may not even fit in memory, 
so making the code efficient would be more 
difficult



Gradient Descent

Solution:

- Minibatch SGD: Perform updates after looking at 
a “minibatch” (e.g. 32 data points)

- Much faster than Batch GD, but largely avoids 
the issues with SGD



Gradient Descent

https://stats.stackexchange.com/a/153535

https://stats.stackexchange.com/a/153535


Practical Considerations

Softmax function



Softmax

So far, our classifier has always output some 
“scores”, and we just pick whichever score is 
higher:

f(           , W, b) = 2 Numbers

Outputs
The scores for the two 

classes - accident 
prone and not 
accident prone



Softmax

However, these scores are not interpretable.

Their absolute values don’t give us any insight, we 
can only compare them relatively

f(           , W, b) = 2 Numbers

Outputs
The scores for the two 

classes - accident 
prone and not 
accident prone



Softmax

The softmax function helps us transform these 
values into probability distributions:

Scores from the classifier Scores as a probability
distribution



Softmax

The softmax function helps us transform these 
values into probability distributions:

Softmax

-1.85
 0.42
 0.15

0.06
0.54
0.40
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scores sum to one 

each output can be treated as the 
probability of that class



-1.85
 0.42
 0.15

Softmax

The softmax function helps us transform these 
values into probability distributions:

Softmax

0.06
0.54
0.40

The Softmax function also acts as a normalizer, i.e. we can now 
compare scores from different models and examples directly

scores sum to one 

each output can be treated as the 
probability of that class



Practical Considerations

Cross Entropy loss



Recall from the previous lecture:

Cross Entropy Loss

Mean Squared Error



Cross Entropy Loss

Recall from the previous lecture:

We saw that MSE is better than just taking the 
absolute difference:

Mean Squared Error



Cross Entropy Loss

Recall from the previous lecture:

In practice, we use Cross Entropy loss, which 
generally performs better for more complex 
models.

Mean Squared Error



Here, y represents the true probability distribution 
(so yi = 1 for the correct class i, and 0 otherwise)

fi represents the score of class i from our classifier

Cross Entropy Loss



Cross Entropy Loss

Simplifying for our case, 
if c is the correct class, then yc = 1, and all other yi’s are 0

Therefore, we only have one element left from the summation



Cross Entropy Loss



Cross Entropy Loss

Mean Squared Error Cross Entropy



Cross Entropy Loss

Why cross entropy?
Consider three people, Person1 is a Democrat, Person2 is a 
Republican and Person3 is Other. We have two models to 
classify these people:

https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-s
quared-error-for-neural-network-classifier-training/

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/


Cross Entropy Loss

Both models misclassify Person3, but is one model better 
than the other?

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2



Cross Entropy Loss

Model 2 is better, since it classifies Person1 and Person2 
with higher scores on the correct class, and mis-classifies 

Person3 with a smaller error in the scores

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2



Cross Entropy Loss

Person1:  0.54

Person2:  0.54

Person3:  1.34

Model 1 Average: 0.81

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Mean Squared Error

Person1:  0.14

Person2:  0.14

Person3:  0.74

Model 2 Average: 0.34



Cross Entropy Loss

Person1:  -log(0.4) = 0.92

Person2:  -log(0.4) = 0.92

Person3:  -log(0.1) = 2.30

Model 1 Average: 1.38

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Cross Entropy

Person1:  0.36

Person2:  0.36

Person3:  1.20

Model 2 Average: 0.64



Cross Entropy Loss

Model 1 Average: 1.38

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Cross Entropy

Model 2 Average: 0.64

Model 1 Average: 0.81 Model 2 Average: 0.34

Mean Squared Error



Cross Entropy Loss

Model 1 Average: 1.38

Cross Entropy

Model 2 Average: 0.64

Model 1 Average: 0.81 Model 2 Average: 0.34

Mean Squared Error

Cross Entropy Loss difference between the two models 
is greater than the Mean Squared Error!



Cross Entropy Loss

In general, Mean Squared Error penalizes 
incorrect predictions much more than Cross 
Entropy



Cross Entropy Loss

A more principled reason arises from the 
underlying mathematics of MSE and Cross 
Entropy

MSE causes the gradients to become very small 
as the network scores become better, so 
learning slows down!



Cross Entropy and Softmax



Cross Entropy and Softmax

Cross Entropy is mathematically defined to 
compare two probability distributions



Cross Entropy and Softmax

Cross Entropy is mathematically defined to 
compare two probability distributions

Our ground truth is already represented as a probability 
distribution (with all the probability mass on the correct 
class)

 0.00
 1.00
 0.00

y =



Cross Entropy and Softmax

Cross Entropy is mathematically defined to 
compare two probability distributions

However, the scores directly from a linear classifier do not 
form any such distribution:

-1.85
 0.42
 0.15

f =



Cross Entropy and Softmax

Cross Entropy is mathematically defined to 
compare two probability distributions

Solution: Use softmax!

0.06
0.54
0.40

softmax(f) =



Putting it all together

Linear Classifier
Softmax Cross Entropy



Overall Picture

Neural 
Network

Loss Function

Optimization 
FunctionInput data

Parameters


