
Machine Learning II

Hassan Sajjad and Fahim Dalvi

Qatar Computing Research Institute, HBKU

Lecture # 4

Course series: Deep Learning for Machine Translation

Recap

Linear Classifier

Loss Function

Optimization
FunctionInput data

Parameters

Optimization

• Recall from Lecture 3:
– For every training example, we compute a loss
– We then use the loss to adjust the parameters
– Updated parameters should result in a lower loss

• We “adjust” by moving in the direction of the slope of
the function

Optimization

• How can we compute the slope of the function?
– Compute gradients analytically
– Backpropagation

Let us consider the linear classifier and Mean
Squared Error from last lecture:

Optimization

Objective Function

Loss Function

Partial Derivative Rules

Let us compute the gradient of MSE analytically

Optimization

Let us compute the gradient of MSE analytically

Optimization

Let us compute the gradient of MSE analytically

Optimization

Let us compute the gradient of MSE analytically

Optimization

Let us compute the gradient of MSE analytically

Optimization

Let us compute the gradient of MSE analytically

Optimization

But what if the function was slightly more
complicated:

Optimization

But what if the function was slightly more
complicated:

Optimization

Analytical gradients become much more
complicated and tedious to compute!

But what if the function was slightly more
complicated:

Optimization

Backpropagation to the rescue!

Backpropagation

Backpropagation is a technique to compute
gradients of any function with respect to a variable

using the concept of a computation graph

Computation graph: Graphical way of describing
any function:

Backpropagation

Computation graph: Graphical way of describing
any function:

Backpropagation

Each node in the graph is either
an input, an operation or an

output

Computation graph: Graphical way of describing
any function:

Backpropagation

Each node in the graph is either
an input, an operation or an

output

Computation graph: Graphical way of describing
any function:

Backpropagation

Each node in the graph is either
an input, an operation or an

output

Computation graph: Graphical way of describing
any function:

Backpropagation

Computation graph: Graphical way of describing
any function:

Backpropagation

Computation graph: Graphical way of describing
any function:

Backpropagation

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

Backpropagation

We can now use the chain rule to compute the gradient, and
work our way backwards from the output to the inputs!

To complete the picture, we can then use the
gradients to update the parameters using gradient
descent

Optimization

To complete the picture, we can then use the
gradients to update the parameters using gradient
descent

Recall: We want to take a “step” in the direction of
the slope

Optimization

To complete the picture, we can then use the
gradients to update the parameters using gradient
descent

Optimization

To complete the picture, we can then use the
gradients to update the parameters using gradient
descent

Optimization

Step size
Learning rate

Optimization Exercise

Let’s see a linear classifier in code!
1. Data setup
2. Defining objective and loss functions
3. Implementing gradient functions
4. Optimization
5. Bonus: Plotting results

Optimization Exercise

Data setup

• Usually data is loaded from an external source
• Eventually, all data is represented in some structured

form like in matrices
• Data for supervised learning is normally composed of

the actual data points and the labels for each point

Optimization Exercise

Defining objective and loss functions

• In this case, fn is the objective function for a linear
classifier

• loss computes mean squared error

Optimization Exercise

Implementing gradient functions

• We care about the gradient of the loss function with
respect to each of our trainable parameters, i.e ,
and

• Gradients can be computed analytically or using the
computation graph as we’ve seen before - only the final
form is important

Optimization Exercise

Implementing gradient functions

• We care about the gradient of the loss function with
respect to each of our trainable parameters, i.e ,
and

• Gradients can be computed analytically or using the
computation graph as we’ve seen before - only the final
form is important

Optimization Exercise

Optimization

Parameter Initialization

Optimization Exercise

Optimization

Optional: Maintain history so you
can plot progress later

Optimization Exercise

Optimization

Parameter initialization for
optimization algorithm.
Here we are going to use SGD, so
there is only one parameter to
set: learning rate

Optimization Exercise

Optimization

Main optimization loop
We will pass over the data
(# epochs) 20 times in this case

Optimization Exercise

Optimization

Compute average loss over the
entire dataset.
This number should go down as
we train - it’s a measure of how
good our model is.

Optimization Exercise

Optimization

Iterate over each data point. We
compute the loss and gradients
for each example, and nudge our
weights appropriately

Optimization Exercise

Optimization

Iterate over each data point. We
compute the loss and gradients
for each example, and nudge our
weights appropriately

Optimization Exercise

Optimization

Optional: Update history

Optimization Exercise

Prediction

Once we have optimized for w and b, we can just use fn to compute
predictions for any data points!

Optimization Exercise

Bonus: Plotting

Plot data points

Optimization Exercise

Bonus: Plotting

Plot decision boundary

Optimization Exercise

Bonus: Plotting

Optimization Exercise

Let’s put it all together and see it in action
1. Analytical gradient
2. Backproped gradient
3. Overall optimization

Example #2: Consider the linear classifier and Hinge
loss:

Optimization Exercise

Objective Function

Loss Function

Derive the gradients , and :

1. Use derivation rules to derive the gradients analytically
2. Build the computation graph to use backpropagation

Exercise

Hinge Loss

Hinge Loss

Analytical gradients:

Hinge Loss

Now implement the optimization in code!

Exercise

Recap

Linear Classifier

Loss Function

Optimization
FunctionInput data

Parameters

Practical Considerations

Multiclass classification

Multiclass Classification

Recall that we have been using linear regression so
far and making decisions based on the sign of the
output

f(, W, b) = 1 Real Number

Output
If the number is less
than 0, it is accident
prone, else it is not

accident prone

Multiclass Classification

In general, we design our function f such that we
output one number per class:

Outputs
The scores for the two

classes - accident
prone and not
accident prone

f(, W, b) = 2 Numbers

Multiclass Classification

In regression:

In classification:

Output: A real number

Output: A vector

Multiclass Classification

In regression:

In classification:

Output: A real number

Output: A vector

Matrix Vector

Vector Real
number

Multiclass Classification

From now on, we will use this generalized
technique, since it can be easily extended to more
than two classes

Outputs
The scores for the

classes

f(, W, b) = Numbers

Multiclass Classification

From now on, we will use this generalized
technique, since it can be easily extended to more
than two classes

Everything else remains the same - the loss
functions now operates on vectors instead of real
numbers

f(, W, b) = Numbers
(vector)

In regression:

In classification:

Multiclass Classification
Prediction

f(, W, b) >= 0

argmax(f(, W, b))

Pick the class with the
highest score

Practical Considerations

Stochastic vs Batch
gradient descent

Gradient Descent

In the previous implementation, we compute the
objective function and gradient for an example,
adjusted our parameters and then continued with
the next example

Gradient Descent

In the previous implementation, we compute the
objective function and gradient for an example,
adjusted our parameters and then continued with
the next example

This approach is known as stochastic gradient
descent (SGD)

Gradient Descent

Another approach is to accumulate the gradients
over all examples, and then do a single update to
the parameters - this approach is known as Batch
gradient descent

Gradient Descent

Batch gradient descent leads to more “stable”
updates - the direction towards the optimal
parameters is computed after looking at all
examples, instead of just one!

Gradient Descent

What if you had a few outliers (bad examples)

- SGD will cause the parameters to drift farther
from their optimal values when the update loop
goes over these outliers

- Batch GD will drown out the effect of the
outliers since there are many more good
examples

Gradient Descent

But...

- Batch GD requires us to look over the entire
dataset before making any progress - so it’s
much slower

- The entire dataset may not even fit in memory,
so making the code efficient would be more
difficult

Gradient Descent

Solution:

- Minibatch SGD: Perform updates after looking at
a “minibatch” (e.g. 32 data points)

- Much faster than Batch GD, but largely avoids
the issues with SGD

Gradient Descent

https://stats.stackexchange.com/a/153535

https://stats.stackexchange.com/a/153535

Practical Considerations

Softmax function

Softmax

So far, our classifier has always output some
“scores”, and we just pick whichever score is
higher:

f(, W, b) = 2 Numbers

Outputs
The scores for the two

classes - accident
prone and not
accident prone

Softmax

However, these scores are not interpretable.

Their absolute values don’t give us any insight, we
can only compare them relatively

f(, W, b) = 2 Numbers

Outputs
The scores for the two

classes - accident
prone and not
accident prone

Softmax

The softmax function helps us transform these
values into probability distributions:

Scores from the classifier Scores as a probability
distribution

Softmax

The softmax function helps us transform these
values into probability distributions:

Softmax

-1.85
 0.42
 0.15

0.06
0.54
0.40

-1.85
 0.42
 0.15

Softmax

The softmax function helps us transform these
values into probability distributions:

Softmax

0.06
0.54
0.40

scores sum to one

each output can be treated as the
probability of that class

-1.85
 0.42
 0.15

Softmax

The softmax function helps us transform these
values into probability distributions:

Softmax

0.06
0.54
0.40

The Softmax function also acts as a normalizer, i.e. we can now
compare scores from different models and examples directly

scores sum to one

each output can be treated as the
probability of that class

Practical Considerations

Cross Entropy loss

Recall from the previous lecture:

Cross Entropy Loss

Mean Squared Error

Cross Entropy Loss

Recall from the previous lecture:

We saw that MSE is better than just taking the
absolute difference:

Mean Squared Error

Cross Entropy Loss

Recall from the previous lecture:

In practice, we use Cross Entropy loss, which
generally performs better for more complex
models.

Mean Squared Error

Here, y represents the true probability distribution
(so yi = 1 for the correct class i, and 0 otherwise)

fi represents the score of class i from our classifier

Cross Entropy Loss

Cross Entropy Loss

Simplifying for our case,
if c is the correct class, then yc = 1, and all other yi’s are 0

Therefore, we only have one element left from the summation

Cross Entropy Loss

Cross Entropy Loss

Mean Squared Error Cross Entropy

Cross Entropy Loss

Why cross entropy?
Consider three people, Person1 is a Democrat, Person2 is a
Republican and Person3 is Other. We have two models to
classify these people:

https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-s
quared-error-for-neural-network-classifier-training/

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/
https://jamesmccaffrey.wordpress.com/2013/11/05/why-you-should-use-cross-entropy-error-instead-of-classification-error-or-mean-squared-error-for-neural-network-classifier-training/

Cross Entropy Loss

Both models misclassify Person3, but is one model better
than the other?

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Cross Entropy Loss

Model 2 is better, since it classifies Person1 and Person2
with higher scores on the correct class, and mis-classifies

Person3 with a smaller error in the scores

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Cross Entropy Loss

Person1: 0.54

Person2: 0.54

Person3: 1.34

Model 1 Average: 0.81

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Mean Squared Error

Person1: 0.14

Person2: 0.14

Person3: 0.74

Model 2 Average: 0.34

Cross Entropy Loss

Person1: -log(0.4) = 0.92

Person2: -log(0.4) = 0.92

Person3: -log(0.1) = 2.30

Model 1 Average: 1.38

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Cross Entropy

Person1: 0.36

Person2: 0.36

Person3: 1.20

Model 2 Average: 0.64

Cross Entropy Loss

Model 1 Average: 1.38

S
Other

S
Republican

S
Democrat

Person1 0.3 0.3 0.4

Person2 0.3 0.4 0.3

Person3 0.1 0.2 0.7

S
Other

S
Republican

S
Democrat

Person1 0.1 0.2 0.7

Person2 0.1 0.7 0.2

Person3 0.3 0.4 0.3

Model 1 Model 2

Cross Entropy

Model 2 Average: 0.64

Model 1 Average: 0.81 Model 2 Average: 0.34

Mean Squared Error

Cross Entropy Loss

Model 1 Average: 1.38

Cross Entropy

Model 2 Average: 0.64

Model 1 Average: 0.81 Model 2 Average: 0.34

Mean Squared Error

Cross Entropy Loss difference between the two models
is greater than the Mean Squared Error!

Cross Entropy Loss

In general, Mean Squared Error penalizes
incorrect predictions much more than Cross
Entropy

Cross Entropy Loss

A more principled reason arises from the
underlying mathematics of MSE and Cross
Entropy

MSE causes the gradients to become very small
as the network scores become better, so
learning slows down!

Cross Entropy and Softmax

Cross Entropy and Softmax

Cross Entropy is mathematically defined to
compare two probability distributions

Cross Entropy and Softmax

Cross Entropy is mathematically defined to
compare two probability distributions

Our ground truth is already represented as a probability
distribution (with all the probability mass on the correct
class)

 0.00
 1.00
 0.00

y =

Cross Entropy and Softmax

Cross Entropy is mathematically defined to
compare two probability distributions

However, the scores directly from a linear classifier do not
form any such distribution:

-1.85
 0.42
 0.15

f =

Cross Entropy and Softmax

Cross Entropy is mathematically defined to
compare two probability distributions

Solution: Use softmax!

0.06
0.54
0.40

softmax(f) =

Putting it all together

Linear Classifier
Softmax Cross Entropy

Overall Picture

Neural
Network

Loss Function

Optimization
FunctionInput data

Parameters

