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Data Representations
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Data Representations

Dataset
4 examples
2 features

Multi-class Linear Classification

What if we can process all the examples in one go?

How: Stack all examples into one big matrix!



Data Representations

Matrix Vector

Efficient Multi-class Linear Classification

Dataset
4 examples
2 features

[2 x 2]

[2 x 4]

[2 x 1]

scores for all examples
per column



Linear Classification with Softmax

Let us now bring it all together:

• Multiclass classification
• Batch Gradient Descent
• Softmax
• Cross Entropy Loss
• Regularization
• Efficient matrix multiplications



Linear Classification with Softmax

Reminder:

Objective

Loss

Gradients



Softmax Linear Classifier

Total loss: average cross-entropy loss over the 
training examples and the regularization loss



Because there are multiple possible solutions, we 
want to constrain the values of our parameters for 
better optimization

Reminder: Regularization

Penalizes weights that are too large
λ defines how much importance 

you want to give to regularization



Softmax Linear Classifier

Parameter Initialization
Remember that w is a matrix 
now, and b is a vector. We 
initialize parameters randomly



Softmax Linear Classifier

Note that we multiply W with 0.01 to make its 
values small - initializing with small random 
values works better in practice

Parameter Initialization
Remember that w is a matrix 
now, and b is a vector. We 
initialize parameters randomly



Softmax Linear Classifier

Hyperparameter Initialization: Note that in addition to 
the learning rate for gradient descent, we also set the 
regularization parameter for our updated loss function



Softmax Linear Classifier



Softmax Linear Classifier

Objective function

Here we use numpy’s matrix operations to compute 
scores for all of the examples!

Output shape: [num_examples x num_classes]



Softmax Linear Classifier

Again, we use matrix operations to compute 
softmax for all examples simultaneously!

Softmax function



Softmax Linear Classifier

Loss of every example is computed as the log 
probability of the correct class for that example

Loss computation



Softmax Linear Classifier

Loss of every example is computed as the log 
probability of the correct class for that example

Total loss computation



Softmax Linear Classifier
Implementing gradient functions

The gradient for this classifier is a bit involved, but try 
and derive it analytically/by backpropagation 
yourself!



Softmax Linear Classifier
Implementing gradient functions

Indicator function - its value is 1 if the 
condition within the parenthesis is 
true, 0 otherwise



Softmax Linear Classifier
Implementing gradient functions

Intuition: If your softmax scores were [0.2,0.3,0.5] 
with the middle class as the correct class, the 
gradients would change the scores to [0.2,-0.7,0.5] 



Softmax Linear Classifier
Implementing gradient functions

       f = [ 0.2 ,  0.3 , 0.5 ]

gradient = [ 0.2 , -0.7 , 0.5 ] 

Increasing corresponding 
scores in f will result in an 
increase in overall loss 

Increasing corresponding 
score in f will result in a 
decrease in overall loss



Softmax Linear Classifier

Backpropagation: here we 
subtract 1 from the 
probabilities of the correct 
class



Softmax Linear Classifier

Backpropagation for weights W



Softmax Linear Classifier

Add regularization gradient for W



Softmax Linear Classifier

Main optimization loop
#epochs = 100



Softmax Linear Classifier

Print average loss
This should go down as we train



Softmax Linear Classifier

Compute gradients for the 
parameters over the entire set 



Softmax Linear Classifier

Update the parameters



Softmax Linear Classifier

Let’s run it!



Softmax Linear Classifier

Let’s now try the classifier on data that is 

not linearly separable. 



Softmax Linear Classifier

We achieve an accuracy of around 50% on the 
spiral data - Why?



Softmax Linear Classifier

Not Linearly 
separable

Current 
models can 
only draw 

linear 
boundaries!



Neural Networks!
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Linear Separability

Not all problems are linearly classifiable - i.e. if 
you plot the examples in space, you cannot 

draw a line/plane to separate them out



Linear Separability

Not all problems are linearly classifiable - i.e. if 
you plot the examples in space, you cannot 

draw a line/plane to separate them out

Neural Networks are one way 

to solve this problem
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Score for the car to be 
NOT accident prone
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Neural Network
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Neural Network

Score for the car to be 
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Score for the car to be NOT 
accident prone

Color
Speed

Acceleration Old cars

As a simplification, we can say that, each classifier learns to 
look at a particular feature of the input (the car in this case)
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Neural Network

Score for the car to be 
accident prone

Score for the car to be NOT 
accident prone

Neuron Neuron Neuron Neuron Neuron Neuron Neuron

Color
Speed

Acceleration Old cars

As a simplification, we can say that, each neuron learns to 
look at a particular feature of the input (the car in this case)
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Neural Network
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Input
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Neural Network

Input

Layer 1 Layer 2 Layer N

Output



Neural Network

Neurons



Neuron

A Neuron can be thought of as a linear 
classifier plus an activation function

Input
x

Linear classifier

Activation
 Function

Output



Activation Functions

• Intuitively, a neuron looks at a particular feature of the 
data



Activation Functions

As an example, the output of a neuron will be high if the 
feature it supports is contained in the input

(like “low speed” in the current “car”)

• Intuitively, a neuron looks at a particular feature of the 
data

• The activation after the linear classifier gives us an idea 
of how much the neuron “supports” the feature



• Intuitively, a neuron looks at a particular feature of the 
data

• The activation after the linear classifier gives us an idea 
of how much the neuron “supports” the feature

• Activations also helps us map linear spaces into 
non-linear spaces

Activation Functions

Non linearity



Activation Functions



• Entire network is nothing but a function:
 

Linear classifier 

Neural Network
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• Everything else remains the same!
 

Linear classifier 

Neural network with 3 hidden layers

Neural Network



Neural Network
Input Layer 1 Layer 2 Output



Neural Network
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Neural Network

[3 x 300]
[examples x features]

[300 x 100] [50 x 3][100 x 50]

Input Layer 1 Layer 2 Output

[3 x 3]
[examples x classes]

hidden layer 1 size hidden layer 2 size
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Neural Network

Let’s implement a neural network model!



Neural Network

Define the parameters



Neural Network

Sigmoid Activation function



Neural Network

Forward Pass

Layer 1 Layer 2

Activation 
function



Neural Network

Two level forward pass



Neural Network

After forward pass calculation, everything else 
remains the same
– loss
– derivative of loss
– derivative propagates back to hidden layer 

instead of input layer
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Neural Network

Sigmoid Activation function

Derivative of Sigmoid



Neural Network

Backpropagating to hidden layer



Neural Network

Backpropagate to sigmoid function



Neural Network

Finally backpropagate to first layer and update 
the parameters



Neural Network

Let’s see it in action!



Neural Network

Neural network learns the boundaries



Neural Network

Is the learning because of hidden layer or 
because of non-linearity added by Sigmoid?

Exercise: 
1) Remove Sigmoid but keep one hidden layer and report the 

score
2) See the effect of learning rate



Neural Network Libraries

Gradient computation and Neural Network 
implementation is a lot of work!

Neural Network libraries abstract 
away a lot of the complexity



Neural Network Libraries

Benefits of using a library:

• Automatic differentiation
• Abstraction of neurons/layers
• Optimization/Loss functions are already 

implemented!

                 ⋮



Neural Network Libraries

Many libraries to choose from:
• Theano (http://deeplearning.net/software/theano/)
• Torch (http://torch.ch)
• Tensorflow (https://www.tensorflow.org)  
• MXNet (http://mxnet.io) 
• Keras (https://keras.io) 
• Lasagne (https://lasagne.readthedocs.io/en/latest/) 
• Blocks (https://blocks.readthedocs.io/en/latest/)

                 ⋮

http://deeplearning.net/software/theano/
http://torch.ch
https://www.tensorflow.org
http://mxnet.io
https://keras.io
https://lasagne.readthedocs.io/en/latest/


Neural Network Libraries

Keras



Neural Network Libraries



Neural Network Libraries

Import modules



Neural Network Libraries

Data loading



Neural Network Libraries

Model building

One hidden layer ReLU activation Softmax on output layer



Neural Network Libraries

Setup optimization/loss

SGD optimizer Cross Entropy Loss



Neural Network Exercise

Let’s work on real world data

using Keras

1) Report accuracy with 1, 2 and 3 hidden layers of size 100
2) Report accuracy with 2 hidden layers of sizes 100, 200 and 

300
3) Report accuracy with Sigmoid vs ReLU activations between 

the hidden layers
4) Find the best hyper-parameters!


