
Neural Networks

Hassan Sajjad and Fahim Dalvi

Qatar Computing Research Institute, HBKU

Lecture # 5

Course series: Deep Learning for Machine Translation

Recap

Loss Function

Optimization
FunctionInput data

Parameters

Linear Classifier

Data Representations

Dataset
4 examples
2 features

Data Representations

Dataset
4 examples
2 features

Data Representations

Dataset
4 examples
2 features

Linear Regression

Vector

Real
number

Data Representations

Linear Regression

Dataset
4 examples
2 features

Data Representations

Matrix Vector

Multi-class Linear Classification

Dataset
4 examples
2 features

scores

Data Representations

Matrix Vector

Number of
features

Number of
classes

Number of
classes

Multi-class Linear Classification

Dataset
4 examples
2 features

Number of
classes

Data Representations

Multi-class Linear Classification

Number of
features

Number of
classes

3 class classification

[3 x 2]

[2 x 1]

[3 x 1]

Data Representations

Multi-class Linear Classification

In this case, we are performing the above computation per example

Dataset
4 examples
2 features

Data Representations

Multi-class Linear Classification

In this case, we are performing the above computation per example

Dataset
4 examples
2 features

Data Representations

Multi-class Linear Classification

In this case, we are performing the above computation per example

Dataset
4 examples
2 features

Data Representations

Multi-class Linear Classification

In this case, we are performing the above computation per example

Dataset
4 examples
2 features

Data Representations

Multi-class Linear Classification

What if we can process all the examples in one go?

Dataset
4 examples
2 features

Data Representations

Dataset
4 examples
2 features

Multi-class Linear Classification

What if we can process all the examples in one go?

How: Stack all examples into one big matrix!

Data Representations

Matrix Vector

Efficient Multi-class Linear Classification

Dataset
4 examples
2 features

[2 x 2]

[2 x 4]

[2 x 1]

scores for all examples
per column

Linear Classification with Softmax

Let us now bring it all together:

• Multiclass classification
• Batch Gradient Descent
• Softmax
• Cross Entropy Loss
• Regularization
• Efficient matrix multiplications

Linear Classification with Softmax

Reminder:

Objective

Loss

Gradients

Softmax Linear Classifier

Total loss: average cross-entropy loss over the
training examples and the regularization loss

Because there are multiple possible solutions, we
want to constrain the values of our parameters for
better optimization

Reminder: Regularization

Penalizes weights that are too large
λ defines how much importance

you want to give to regularization

Softmax Linear Classifier

Parameter Initialization
Remember that w is a matrix
now, and b is a vector. We
initialize parameters randomly

Softmax Linear Classifier

Note that we multiply W with 0.01 to make its
values small - initializing with small random
values works better in practice

Parameter Initialization
Remember that w is a matrix
now, and b is a vector. We
initialize parameters randomly

Softmax Linear Classifier

Hyperparameter Initialization: Note that in addition to
the learning rate for gradient descent, we also set the
regularization parameter for our updated loss function

Softmax Linear Classifier

Softmax Linear Classifier

Objective function

Here we use numpy’s matrix operations to compute
scores for all of the examples!

Output shape: [num_examples x num_classes]

Softmax Linear Classifier

Again, we use matrix operations to compute
softmax for all examples simultaneously!

Softmax function

Softmax Linear Classifier

Loss of every example is computed as the log
probability of the correct class for that example

Loss computation

Softmax Linear Classifier

Loss of every example is computed as the log
probability of the correct class for that example

Total loss computation

Softmax Linear Classifier
Implementing gradient functions

The gradient for this classifier is a bit involved, but try
and derive it analytically/by backpropagation
yourself!

Softmax Linear Classifier
Implementing gradient functions

Indicator function - its value is 1 if the
condition within the parenthesis is
true, 0 otherwise

Softmax Linear Classifier
Implementing gradient functions

Intuition: If your softmax scores were [0.2,0.3,0.5]
with the middle class as the correct class, the
gradients would change the scores to [0.2,-0.7,0.5]

Softmax Linear Classifier
Implementing gradient functions

 f = [0.2 , 0.3 , 0.5]

gradient = [0.2 , -0.7 , 0.5]

Increasing corresponding
scores in f will result in an
increase in overall loss

Increasing corresponding
score in f will result in a
decrease in overall loss

Softmax Linear Classifier

Backpropagation: here we
subtract 1 from the
probabilities of the correct
class

Softmax Linear Classifier

Backpropagation for weights W

Softmax Linear Classifier

Add regularization gradient for W

Softmax Linear Classifier

Main optimization loop
#epochs = 100

Softmax Linear Classifier

Print average loss
This should go down as we train

Softmax Linear Classifier

Compute gradients for the
parameters over the entire set

Softmax Linear Classifier

Update the parameters

Softmax Linear Classifier

Let’s run it!

Softmax Linear Classifier

Let’s now try the classifier on data that is

not linearly separable.

Softmax Linear Classifier

We achieve an accuracy of around 50% on the
spiral data - Why?

Softmax Linear Classifier

Not Linearly
separable

Current
models can
only draw

linear
boundaries!

Neural Networks!

Linear Classifier Recap

x0

x1

Linear Classifier Recap

x0

x1

Linear Classifier?

x0

x1

Linear Separability

Not all problems are linearly classifiable - i.e. if
you plot the examples in space, you cannot

draw a line/plane to separate them out

Linear Separability

Not all problems are linearly classifiable - i.e. if
you plot the examples in space, you cannot

draw a line/plane to separate them out

Neural Networks are one way

to solve this problem

Linear Classifier

Linear Classifier

Score for the car to be
accident prone

Score for the car to be
NOT accident prone

Linear Classifier

Neural Network

Score for the car to be
accident prone

Score for the car to be
NOT accident prone

Linear Classifier Linear Classifier Linear Classifier Linear Classifier Linear Classifier Linear Classifier

Neural Network

Score for the car to be
accident prone

Score for the car to be NOT
accident prone

Color
Speed

Acceleration Old cars

As a simplification, we can say that, each classifier learns to
look at a particular feature of the input (the car in this case)

Linear Classifier Linear Classifier Linear Classifier Linear Classifier Linear Classifier Linear Classifier Linear Classifier

Neural Network

Score for the car to be
accident prone

Score for the car to be NOT
accident prone

Neuron Neuron Neuron Neuron Neuron Neuron Neuron

Color
Speed

Acceleration Old cars

As a simplification, we can say that, each neuron learns to
look at a particular feature of the input (the car in this case)

Neural Network

Input
x

Neural Network

Input
x

x0
x1
x2
x3
x4
x5
x6

Fe
at

u
re

s

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Think of these richer features as
combinations of the input features
we provided to the system

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Think of these richer features as
combinations of the input features
we provided to the system

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Think of these richer features as
combinations of the input features
we provided to the system

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Think of these richer features as
combinations of the input features
we provided to the system

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Think of these richer features as
combinations of the input features
we provided to the system

Neural Network

Input

Layer 1

The neurons in the layer can be
thought of as representing richer
features

Think of these richer features as
combinations of the input features
we provided to the system

Neural Network

Input

Layer 1 Layer 2

Neural Network

Input

Layer 1 Layer 2 Layer N

Neural Network

Input

Layer 1 Layer 2 Layer N

Output

Neural Network

Neurons

Neuron

A Neuron can be thought of as a linear
classifier plus an activation function

Input
x

Linear classifier

Activation
 Function

Output

Activation Functions

• Intuitively, a neuron looks at a particular feature of the
data

Activation Functions

As an example, the output of a neuron will be high if the
feature it supports is contained in the input

(like “low speed” in the current “car”)

• Intuitively, a neuron looks at a particular feature of the
data

• The activation after the linear classifier gives us an idea
of how much the neuron “supports” the feature

• Intuitively, a neuron looks at a particular feature of the
data

• The activation after the linear classifier gives us an idea
of how much the neuron “supports” the feature

• Activations also helps us map linear spaces into
non-linear spaces

Activation Functions

Non linearity

Activation Functions

• Entire network is nothing but a function:

Linear classifier

Neural Network

• Entire network is nothing but a function:

Neural network with 3 hidden layers

Neural Network

• Entire network is nothing but a function:

Neural network with 3 hidden layers

Neural Network

• Entire network is nothing but a function:

Neural network with 3 hidden layers

Neural Network

• Entire network is nothing but a function:

Neural network with 3 hidden layers

Neural Network

• Entire network is nothing but a function:

Neural network with 3 hidden layers

Neural Network

• Everything else remains the same!

Linear classifier

Neural network with 3 hidden layers

Neural Network

Neural Network
Input Layer 1 Layer 2 Output

Neural Network

[3 x 300]
[examples x features]

[300 x 100] [50 x 3][100 x 50]

Input Layer 1 Layer 2 Output

[3 x 3]
[examples x classes]

Neural Network

[3 x 300]
[examples x features]

[300 x 100] [50 x 3][100 x 50]

Input Layer 1 Layer 2 Output

[3 x 3]
[examples x classes]

Neural Network

[3 x 300]
[examples x features]

[300 x 100] [50 x 3][100 x 50]

Input Layer 1 Layer 2 Output

[3 x 3]
[examples x classes]

hidden layer 1 size hidden layer 2 size

Overall Picture

Neural
Network

Loss Function

Optimization
FunctionInput data

Parameters

Neural Network

Let’s implement a neural network model!

Neural Network

Define the parameters

Neural Network

Sigmoid Activation function

Neural Network

Forward Pass

Layer 1 Layer 2

Activation
function

Neural Network

Two level forward pass

Neural Network

After forward pass calculation, everything else
remains the same
– loss
– derivative of loss
– derivative propagates back to hidden layer

instead of input layer

Neural Network

Forward Pass

Layer 1 Layer 2

Activation
function

Neural Network

Forward Pass

Layer 1 Layer 2

Activation
function

Neural Network

Forward Pass

Layer 1 Layer 2

Activation
function

Neural Network

Sigmoid Activation function

Derivative of Sigmoid

Neural Network

Backpropagating to hidden layer

Neural Network

Backpropagate to sigmoid function

Neural Network

Finally backpropagate to first layer and update
the parameters

Neural Network

Let’s see it in action!

Neural Network

Neural network learns the boundaries

Neural Network

Is the learning because of hidden layer or
because of non-linearity added by Sigmoid?

Exercise:
1) Remove Sigmoid but keep one hidden layer and report the

score
2) See the effect of learning rate

Neural Network Libraries

Gradient computation and Neural Network
implementation is a lot of work!

Neural Network libraries abstract
away a lot of the complexity

Neural Network Libraries

Benefits of using a library:

• Automatic differentiation
• Abstraction of neurons/layers
• Optimization/Loss functions are already

implemented!

 ⋮

Neural Network Libraries

Many libraries to choose from:
• Theano (http://deeplearning.net/software/theano/)
• Torch (http://torch.ch)
• Tensorflow (https://www.tensorflow.org)
• MXNet (http://mxnet.io)
• Keras (https://keras.io)
• Lasagne (https://lasagne.readthedocs.io/en/latest/)
• Blocks (https://blocks.readthedocs.io/en/latest/)

 ⋮

http://deeplearning.net/software/theano/
http://torch.ch
https://www.tensorflow.org
http://mxnet.io
https://keras.io
https://lasagne.readthedocs.io/en/latest/

Neural Network Libraries

Keras

Neural Network Libraries

Neural Network Libraries

Import modules

Neural Network Libraries

Data loading

Neural Network Libraries

Model building

One hidden layer ReLU activation Softmax on output layer

Neural Network Libraries

Setup optimization/loss

SGD optimizer Cross Entropy Loss

Neural Network Exercise

Let’s work on real world data

using Keras

1) Report accuracy with 1, 2 and 3 hidden layers of size 100
2) Report accuracy with 2 hidden layers of sizes 100, 200 and

300
3) Report accuracy with Sigmoid vs ReLU activations between

the hidden layers
4) Find the best hyper-parameters!

